Article

High-throughput Screening of Real Metal-organic Frameworks for Adsorption Separation of C4 Olefins

  • Lei Yang ,
  • Yujing Wu ,
  • Xuanjun Wu ,
  • Weiquan Cai
Expand
  • a School of Chemistry, Chemical Engineering & Life Sciences, Wuhan University of Technology, Wuhan 430070, China
    b School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
    c School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China

Received date: 2020-11-17

  Online published: 2021-02-05

Abstract

The conventional separation process of olefin/paraffin with cryogenic and high-pressure distillation usually exhibits high energy consumption and low efficiency. The adsorption separation technology is widely promising in the field of olefin/paraffin separation because of its mild operation conditions and high energy efficiency. In this work, high-throughput screening was adopted to find the optimal adsorbents from 12723 real metal-organic framework (MOF) materials, which is available for adsorption separation of 1,3-butadiene from C4 olefin/paraffin mixture. Firstly, 7681 adsorbents with suitable pore size and specific surface area were selected from the total database according to their structural parameters. Then their mechanical properties were computed by molecular mechanics. The mechanical properties of UIO-66 were used as the threshold to obtain 959 candidate MOFs with stable structure. Secondly, the grand canonical Monte Carlo (GCMC) simulation was performed to calculate the selective adsorption behavior of a quinary equimolar C4 olefin mixture in different candidate MOFs at 298 K and 0.1 MPa. According to their adsorption performance scores (APS) of 1,3-butadiene, the candidate MOFs are ranked to obtain 8 MOFs with the optimal adsorption and separation performance. The structural characteristics of MOFs with high adsorption and separation performance are revealed through quantitative structure-activity relationship, adsorption isotherm and ideal adsorption solution theory. The breakthrough curve simulation further verified that 2-cis-butene could effectively separate from 1,3-butadiene in the fixed bed filled with the optimal adsorbent RIGPEE01. Finally, it is determined that the preferential adsorption mechanism of 1,3-butadiene in RIGPEE01 is mainly due to the strong adsorption sites of Cu(I), π bond coupling effect and the size sieving effect based on the radial distribution function and binding energy analysis. The high-throughput screening method and the molecule-level insights on the olefin separation mechanism of MOFs proposed in this work have laid a theoretical foundation for the further development of new adsorbents for the separation of olefin/paraffin mixtures.

Cite this article

Lei Yang , Yujing Wu , Xuanjun Wu , Weiquan Cai . High-throughput Screening of Real Metal-organic Frameworks for Adsorption Separation of C4 Olefins[J]. Acta Chimica Sinica, 2021 , 79(4) : 520 -529 . DOI: 10.6023/A20110526

References

[1]
Liao, P.Q.; Huang, N.Y.; Zhang, W.X.; Zhang, J.P.; Chen, X.M. Science 2017, 356,1193.
[2]
Zhang, Z.; Yang, Q.; Cui, X.; Yang, L.; Bao, Z.; Ren, Q.; Xing, H. Angew. Chem. Int. Ed. 2017, 56,16282.
[3]
Luna-Triguero, A.; Vicent-Luna, J.M.; Poursaeidesfahani, A.; Vlugt, T.J. H.; Sanchez-De-Armas, R.; Gomez-Alvarez, P.; Calero, S. ACS Appl. Mater. Interfaces 2018, 10,16911.
[4]
Kishida, K.; Okumura, Y.; Watanabe, Y.; Mukoyoshi, M.; Bracco, S.; Comotti, A.; Sozzani, P.; Horike, S.; Kitagawa, S. Angew. Chem. Int. Ed. 2016, 55,13784.
[5]
Sholl, D.S.; Lively, R.P. Nature 2016, 532,435.
[6]
Cadiau, A.; Adil, K.; Bhatt, P.M.; Belmabkhout, Y.; Eddaoudi, M. Science 2016, 353,137.
[7]
Mofarahi, M.; Sadrameli, M.; Towfighi, J. J. Chem. Eng. Data 2003, 48,1256.
[8]
Grande, C.A.; Gascon, J.; Kapteijn, F.; Rodrigues, A.E. Chem. Eng. J. 2010, 160,207.
[9]
Ma, X.L.; Williams, S.; Wei, X.T.; Kniep, J.; Lin, Y.S. Ind. Eng. Chem. Res. 2015, 54,9824.
[10]
Sumida, K.; Rogow, D.L.; Mason, J.A.; Mcdonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.-H.; Long, J.R. Chem. Rev. 2012, 112,724.
[11]
Britt, D.; Tranchemontagne, D.; Yaghi, O.M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105,11623.
[12]
Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112,869.
[13]
Furukawa, H.; Cordova, K.E.; O'keeffe, M.; Yaghi, O.M. Science 2013, 341,974.
[14]
Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.W. Chem. Rev. 2012, 112,782.
[15]
Alduhaish, O.; Li, B.; Arman, H.; Lin, R.-B.; Zhao, J.C.-G.; Chen, B. Chin. Chem. Lett. 2017, 28,1653.
[16]
Ghalei, B.; Wakimoto, K.; Wu, C.Y.; Isfahani, A.P.; Yamamoto, T.; Sakurai, K.; Higuchi, M.; Chang, B.K.; Kitagawa, S.; Sivaniah, E. Angew. Chem. Int. Ed. 2019, 58,19034.
[17]
Yang, D.; Gates, B.C. ACS Catal. 2019, 9,1779.
[18]
Sumer, Z.; Keskin, S. Ind. Eng. Chem. Res. 2017, 56,8713.
[19]
Chiau Junior, M.J.; Wang, Y.; Wu, X.; Cai, W. Int. J. Hydrogen Energy 2020, 45,27320.
[20]
Bao, Z.; Chang, G.; Xing, H.; Krishna, R.; Ren, Q.; Chen, B. Energy Environ. Sci. 2016, 9,3612.
[21]
Xiang, S.C.; Zhang, Z.; Zhao, C.G.; Hong, K.; Zhao, X.; Ding, D.R.; Xie, M.H.; Wu, C.D.; Das, M.C.; Gill, R. Nat. Commun. 2011, 2,204.
[22]
Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y. Science 2016, 353,141.
[23]
Li, B.; Cui, X.; O'nolan, D.; Wen, H.-M.; Jiang, M.; Krishna, R.; Wu, H.; Lin, R.-B.; Chen, Y.-S.; Yuan, D. Adv. Mater. 2017, 29,1704210.1.
[24]
Cadiau, A.; Adil, K.; Bhatt, P.M.; Belmabkhout, Y.; Eddaoudi, M. Science 2016, 353,137.
[25]
Bae, Y.S.; Lee, C.Y.; Kim, K.C.; Farha, O.K.; Nickias, P.; Hupp, J.T.; Nguyen, S.T.; Snurr, R.Q. Angew. Chem. Int. Ed. 2012, 51,1857.
[26]
Wang, H.; Dong, X.L.; Lin, J.Z.; Teat, S.J.; Jensen, S.; Cure, J.; Alexandrov, E.V.; Xia, Q.B.; Tan, K.; Wang, Q.N.; Olson, D.H.; Proserpio, D.M.; Chabal, Y.J.; Thonhauser, T.; Sun, J.L.; Han, Y.; Li, J. Nat. Commun. 2018, 9,11.
[27]
Herm, Z.R.; Wiers, B.M.; Mason, J.A.; Van Baten, J.M.; Hudson, M.R.; Zajdel, P.; Brown, C.M.; Masciocchi, N.; Krishna, R.; Long, J.R. Science 2013, 340,960.
[28]
Peng, L.; Zhu, Q.; Wu, P.L.; Wu, X.J.; Cai, W.Q. Phys. Chem. Chem. Phys. 2019, 21,8508.
[29]
Qiao, Z.W.; Xu, Q.S.; Jiang, J.W. J. Mater. Chem. A 2018, 6,18898.
[30]
Boyd, P.G.; Chidambaram, A.; Garcia-Diez, E.; Ireland, C.P.; Daff, T.D.; Bounds, R.; Gladysiak, A.; Schouwink, P.; Moosavi, S.M.; Maroto-Valer, M.M.; Reimer, J.A.; Navarro, J.a. R.; Woo, T.K.; Garcia, S.; Stylianou, K.C.; Smit, B. Nature 2019, 576,253.
[31]
Nazarian, D.; Camp, J.S.; Sholl, D.S. Chem. Mater. 2016, 28,785.
[32]
Wilmer, C.E.; Farha, O.K.; Bae, Y.S.; Hupp, J.T.; Snurr, R.Q. Energy Environ. Sci. 2012, 5,9849.
[33]
Wang, L.; Fang, G.Y.; Yang, Q.Y. CIESC J. 2019, 70,1135. (in Chinese)
[33]
( 王磊, 方桂英, 阳庆元, 化工学报, 2019, 70,1135.)
[34]
Yang, W.Y.; Liang, H.; Qiao, Z.W. Acta Chim. Sinica 2018, 76,785. (in Chinese)
[34]
( 杨文远, 梁红, 乔智威, 化学学报, 2018, 76,785.)
[35]
Cai, C.Z.; Li, L.F.; Deng, X.M.; Li, S.H.; Liang, H.; Qiao, Z.W. Acta Chim. Sinica 2020, 78,427. (in Chinese)
[35]
( 蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78,427.)
[36]
Liu, Z.L.; Li, W.; Liu, H.; Zhuang, X.D.; Li, S. Acta Chim. Sinica 2019, 77,323. (in Chinese)
[36]
( 刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77,323.)
[37]
Bian, L.; Li, W.; Wei, Z.; Liu, X.; Li, S. Acta Chim. Sinica 2018, 76,303. (in Chinese)
[37]
( 卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76,303.)
[38]
Chung, Y.G.; Haldoupis, E.; Bucior, B.J.; Haranczyk, M.; Lee, S.; Zhang, H.; Vogiatzis, K.D.; Milisavljevic, M.; Ling, S.; Camp, J.S.; Slater, B.; Siepmann, J.I.; Sholl, D.S.; Snurr, R.Q. J. Chem. Eng. Data 2019, 64,5985.
[39]
Willems, T.F.; Rycroft, C.; Kazi, M.; Meza, J.C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149,134.
[40]
Rappe, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. J. Am. Chem. Soc. 1992, 114,10024.
[41]
Babarao, R.; Jiang, J. Langmuir 2008, 24,6270.
[42]
Wu, X.J.; Zhao, P.; Fang, J.M.; Wang, J.; Liu, B.S.; Cai, W.Q. Acta Phys.-Chim. Sin. 2014, 30,2043. (in Chinese)
[42]
( 吴选军, 赵鹏, 方继敏, 王杰, 刘保顺, 蔡卫权, 物理化学学报, 2014, 30,2043.)
[43]
Skoulidas, A.I.; Sholl, D.S. J. Phys. Chem. B 2005, 109,15760.
[44]
Wick, C.D.; Martin, M.G.; Siepmann, J.I. J. Phys. Chem. B 2000, 104,8008.
[45]
Maerzke, K.A.; Schultz, N.E.; Ross, R.B.; Siepmann, J.I. J. Phys. Chem. B 2009, 113,6415.
[46]
Karavias, F.; Myers, A.L. Mol. Simul. 1991, 8,51.
[47]
Wu, X.; Wang, Y.; Cai, Z.; Zhao, D.; Cai, W. Chem. Eng. Sci. 2020, 226,115837.
[48]
Wu, H.; Yildirim, T.; Zhou, W. J. Phys. Chem. Lett. 2013, 4,925.
[49]
Dubbeldam, D.; Calero, S.; Ellis, D.E.; Snurr, R.Q. Mol. Simul. 2015, 42,81.
[50]
Dubbeldam, D.; Walton, K.S.; Ellis, D.E.; Snurr, R.Q. Angew. Chem. Int. Ed. 2007, 46,4496.
[51]
Wu, X.; Huang, J.; Cai, W.; Jaroniec, M. RSC Adv. 2014, 4,16503.
[52]
Moghadam, P.Z.; Rogge, S.M. J.; Li, A.; Chow, C.-M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez- Gualdron, D.A.; Van Speybroeck, V.; Fairen-Jimenez, D. Matter 2019, 1,219.
[53]
"Materials Studio", Accelrys Software Inc: San Diego, CA 92121, USA, 2001-2013.
[54]
Wu, X.J.; Li, L.; Fang, T.G.; Wang, Y.T.; Cai, W.Q.; Xiang, Z.H. Phys. Chem. Chem. Phys. 2017, 19,9261.
[55]
Wu, X.J.; Peng, L.; Xiang, S.C.; Cai, W.Q. Phys. Chem. Chem. Phys. 2018, 20,30150.
[56]
Yang, R.T. Adsorbents: Fundamentals and Applications, John Wiley & Sons Inc., New Jersey, 2003.
[57]
Ruthven, D.M.; Farooq, S.; Knaebel, K.S. Pressure Swing Adsorption, VCH Publisher, New Jersey, 1994.
[58]
Goto, M.; Smith, J.M.; Mccoy, B.J. Chem. Eng. Sci. 1990, 45,443.
[59]
Myers, A.L.; Prausnitz, J.M. AlChE J. 1965, 11,121.
[60]
Golshan-Shirazi, S.; Guiochon, G. Anal. Chem. 1988, 60,2364.
[61]
Ferreira, A.F. P.; Santos, J.C.; Plaza, M.G.; Lamia, N.; Loureiro, J.M.; Rodrigues, A.E. Chem. Eng. J. 2011, 167,1.
[62]
Li, K.H.; Olson, D.H.; Seidel, J.; Emge, T.J.; Gong, H.W.; Zeng, H.P.; Li, J. J. Am. Chem. Soc. 2009, 131,10368.
[63]
Chen, Y.Q.; Li, G.R.; Chang, Z.; Qu, Y.K.; Zhang, Y.H.; Bu, X.H. Chem. Sci. 2013, 4,3678.
[64]
Simon, C.M.; Smit, B.; Haranczyk, M. Comput. Phys. Commun. 2016, 200,364.
Outlines

/