Article

Research on CuO/CeO2-ZrO2/SiC Monolithic Catalysts for Hydrogen Production by Methanol Steam Reforming

  • Tong Jiao ,
  • Xue-lian Xu ,
  • Lei Zhang ,
  • You-yun Weng ,
  • Yu-bing Weng ,
  • Zhi-xian Gao
Expand
  • a School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
    b Guizhou Muyee Fine Ceramics Company Limited, Guiyang 550000, China

Received date: 2020-12-10

  Online published: 2021-02-05

Supported by

National Natural Science Foundation of China(21673270)

Abstract

Hydrogen proton exchange membrane fuel cell is considered as the most cleanest way with high energy efficiency of hydrogen energy utilization. However, the high storage and transportation cost of hydrogen can always be the important factors hindering its development. Fortunately, on-site hydrogen production from methanol steam reforming can effectively solve this problem, which has low reforming temperature and CO content in reforming gas. Monolithic catalyst, a kind of catalytic material, on which the active components loaded on the formed support are generally honeycombed structures with multiple parallel channels. Therefore, compared to the traditional beaded catalytic materials, the monolithic catalytic material has lower pressure drop and higher mass transfer efficiency, which means that the monolithic catalysts have a certain practical application prospect. Ceria-zirconia solid solution was prepared by the sol-gel method, then a series xCuO/CeO2-ZrO2/SiC catalysts were prepared by incipient-wetness impregnation method, and demonstrated considerable catalytic activity at high velocity reaction conditions. The catalyst samples were characterized by X-ray diffraction (XRD), BET specific surface area test, H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) techniques. According to the results, we proposed that the catalytic performances are mainly effected by the surface area of Cu, the interaction between active component and support, and the amount of oxygen vacancy. Among those catalysts, 5%CuO/CeO2-ZrO2/SiC had relatively higher copper specific surface area, stronger interaction between CuO and support, more oxygen vacancies, thus showing better catalytic activity. When the reaction temperature reached 360 ℃, with a water/methanol molar ratio of 1.2, methanol and water total gas hourly space velocity of 4840 h–1, the methanol conversion reached 89.9%, and the H2 production rate was 1556 L•m–3•s–1. When compared with the traditional bead catalyst, monolithic catalyst seems to be more suitable for high space velocity methanol steam reforming reaction, also the SiC support is chemical stable and has favorable thermal conductivity, which avoiding the device volume increase caused by the additional heating device, thus facilitating the integration of minitype reactors for hydrogen generation.

Cite this article

Tong Jiao , Xue-lian Xu , Lei Zhang , You-yun Weng , Yu-bing Weng , Zhi-xian Gao . Research on CuO/CeO2-ZrO2/SiC Monolithic Catalysts for Hydrogen Production by Methanol Steam Reforming[J]. Acta Chimica Sinica, 2021 , 79(4) : 513 -519 . DOI: 10.6023/A20120562

References

[1]
Jung, C.; Nagel, L.; Schindler, D.; Grau, L. Int. J. Hydrogen Energy 2018, 43,23161.
[2]
Muradov, N. Int. J. Hydrogen Energy 2017, 42,14058.
[3]
Uyar, T.S.; Besikci, D. Int. J. Hydrogen Energy 2017, 42,2453.
[4]
Xi, H.J.; Hou, X.N.; Liu, Y.J.; Qing, S.J.; Gao, Z.X. Angew. Chem., Int. Ed. 2014, 53,11886.
[5]
Chi, H.; Andolina, C.M.; Li, J.; Curnan, M.T.; Saidi, W.A.; Zhou, G.W.; Yang, J.C.; Veser, G. Appl. Catal., A 2018, 556,64.
[6]
Jampa, S.; Jamieson, A.M.; Chaisuwan, T.; Luengnaruemithai, A.; Wongkasemjit, S. Int. J. Hydrogen Energy 2017, 42,15073.
[7]
Kuc, J.; Neumann, M.; Armbruster, M.; Yoon, S.; Zhang, Y.C.; Erni, R.; Weidenkaff, A.; Matam, S.K. Catal. Sci. Technol. 2016, 6,43.
[8]
Ma, Y.F.; Guan, G.Q.; Phanthong, P.; Li, X.M.; Cao, J.; Hao, X.G.; Wang, Z.D.; Abudula, A. Int. J. Hydrogen Energy 2014, 39,18803.
[9]
Sa, S.; Silva, H.; Brandao, L.; Sousa, J.M.; Mendes, A. Appl. Catal., B 2010, 99,43.
[10]
Yao, C.Z.; Zhang, X.R.; Wang, L.C.; Cao, Y.; Dai, W.L.; Fan, K.N.; Wu, D.; Sun, Y.H. Acta Chim. Sinica 2006, 64,269. (in Chinese)
[10]
( 姚成漳, 张新荣, 王路存, 曹勇, 戴维林, 范康年, 吴东, 孙予罕, 化学学报, 2006, 64,269.)
[11]
Kim, W.; Mohaideen, K.K.; Seo, D.J.; Yoon, W.L. Int. J. Hydrogen Energy 2017, 42,2081.
[12]
Zhou, J.J.; Zhang, Y.; Wu, G.S.; Mao, D.S.; Lu, G.Z. RSC Adv. 2016, 6,30176.
[13]
Das, D.; Llorca, J.; Dominguez, M.; Colussi, S.; Trovarelli, A.; Gayen, A. Int. J. Hydrogen Energy 2015, 40,10463.
[14]
Figueiredo, R.T.; Martinez-Arias, A.; Granados, M.L.; Fierro, J.L. G. J. Catal. 1998, 178,146.
[15]
Liu, Y.; Hayakawa, T.; Tsunoda, T.; Suzuki, K.; Hamakawa, S.; Murata, K.; Shiozaki, R.; Ishii, T.; Kumagai, M. Top. Catal. 2003, 22,205.
[16]
Khani, Y.; Bahadoran, F.; Safari, N.; Soltanali, S.; Taheri, S.A. Int. J. Hydrogen Energy 2019, 44,11824.
[17]
Zhou, S.L.; Yuan, Z.S.; Wang, S.D. Int. J. Hydrogen Energy 2006, 31,924.
[18]
Qi, A.D.; Wang, S.D.; Fu, G.Z.; Ni, C.J.; Wu, D.Y. Appl. Catal., A 2005, 281,233.
[19]
Suetsuna, T.; Suenaga, S.; Fukasawa, T. Appl. Catal., A 2004, 276,275.
[20]
Liu, N.; Yuan, Z.S.; Zhang, C.X.; Wang, S.J.; Li, D.Y.; Wang, S.D. Chin. J. Catal. 2005, 26,1078. (in Chinese)
[20]
( 刘娜, 袁中山, 张纯希, 王淑娟, 李德意, 王树东, 催化学报, 2005, 26,1078.)
[21]
Liu, N.; Wang, S.D.; Yuan, Z.S.; Zhang, C.X.; Wang, S.J.; Li, D.Y.; Fu, G.Z. CIESC J. 2004, 55,90. (in Chinese)
[21]
( 刘娜, 王树东, 袁中山, 张纯希, 王淑娟, 李德意, 付桂芝, 化工学报, 2004, 55,90.)
[22]
Liu, Y.J.; Wang, D.Z.; Zhang, L.; Bai, J.; Chen, L.; Liu, D.S. Fine Chem. 2018, 35,2045. (in Chinese)
[22]
( 刘玉娟, 王东哲, 张磊, 白金, 陈琳, 刘道胜, 精细化工, 2018, 35,2045.)
[23]
Putna, E.S.; Bunluesin, T.; Fan, X.L.; Gorte, R.J.; Vohs, J.M.; Lakis, R.E.; Egami, T. Catal. Today 1999, 50,343.
[24]
He, J.P.; Yang, Z.X.; Zhang, L.; Li, Y.; Pan, L.W. Int. J. Hydrogen Energy 2017, 42,9930.
[25]
He, J.P.; Zhang, L.; Chen, L.; Yang, Z.X.; Tong, Y.F. Chem. J. Chinese U. 2017, 38,1822. (in Chinese)
[25]
( 贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞, 高等学校化学学报, 2017, 38,1822.)
[26]
Yang, S.Q.; Zhou, F.; Liu, Y.J.; Zhang, L.; Chen, Y.; Wang, H.H.; Tian, Y.; Zhang, C.S.; Liu, D.S. Int. J. Hydrogen Energy 2019, 44,7252.
[27]
She, W.; Qi, T.Q. J.; Cui, M.X.; Yan, P.F.; Weng, N.S. W.; Li, W.Z.; Li, G.M. ACS Appl. Mater. Interfaces 2018, 10,14698.
[28]
Wang, D.Z.; Feng, X.; Zhang, J.; Chen, L.; Zhang, L.; Wang, H.H.; Bai, J.; Zhang, C.S.; Zhang, Z.Y. J. Fuel Chem. Technol. 2019, 47,1251. (in Chinese)
[28]
( 王东哲, 冯旭, 张健, 陈琳, 张磊, 王宏浩, 白金, 张财顺, 张政一, 燃料化学学报, 2019, 47,1251.)
[29]
Prusty, D.; Pathak, A.; Mukherjee, M.; Mukherjee, B.; Chowdhury, A. Mater. Charact. 2015, 10,31.
[30]
Bai, Y.X.; Wu, J.J.; Qiu, X.P.; Wang, J.S.; Zhu, W.T.; Chen, L.Q. Acta Chim. Sinica 2006, 64,527. (in Chinese)
[30]
( 白玉霞, 吴建军, 邱新平, 王建设, 朱文涛, 陈立泉, 化学学报, 2006, 64,527.)
[31]
Wang, Z.H.; Shi, G.Y.; Xia, J.F.; Zhang, F.F.; Xia, Y.Z.; Li, Y.H.; Xia, L.H. Acta Chim. Sinica 2013, 71,1225. (in Chinese)
[31]
( 王宗花, 史国玉, 夏建飞, 张菲菲, 夏延致, 李延辉, 夏临华, 化学学报, 2013, 71,1225.)
[32]
Zhang, L.; Pan, L.W.; Ni, C.J.; Sun, T.J.; Zhao, S.S.; Wang, S.D.; Wang, A.J.; Hu, Y.K. Int. J. Hydrogen Energy 2013, 38,4397.
[33]
Song, Q.L.; Men, Y.; Wang, J.G.; Liu, S.; Chai, S.S.; An, W.; Wang, K.; Li, Y.Y.; Tang, Y.H. Int. J. Hydrogen Energy 2020, 45,9592.
Outlines

/