Review

Research Progress on the Synthesis of Covalent Organic Frameworks and Their Applications in Tumor Therapy

  • Tao Wang ,
  • Lu Zhao ,
  • Kewei Wang ,
  • Yunfeng Bai ,
  • Feng Feng
Expand
  • 1 College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China

Received date: 2020-12-22

  Online published: 2021-02-05

Supported by

National Natural Science Foundation of China(21975146); Natural Science Foundation of Shanxi Province(201801D121035); Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi Province(2020KJ023); Shanxi Scholarship Council of China(2020-133)

Abstract

Covalent organic frameworks (COFs) are a class of crystalline porous polymer composed of organic units developed in recent years. Due to their good porosity, modularity, crystallinity and biocompatibility, they show a good application prospect in tumor therapy. The porous channels with adjustable pore sizes of COFs make them become an ideal drug delivery material. In addition, COFs can also be used in photothermal therapy and photodynamic therapy in combination with photothermal agents and photosensitizers. This review systematically introduces the synthesis methods of COFs, including solvothermal synthesis, mechanochemical synthesis, microwave synthesis, ionothermal synthesis, interfacial synthesis, room temperature synthesis and nanoscale synthesis. According to the differences in the mechanism of tumor therapy, the applications of COFs nanocarrier system for tumor therapy were reviewed, including chemotherapy, photothermal therapy, photodynamic therapy and combined therapy, proving that the promising drug carrier can effectively improve the therapeutic effect of nanocarriers on tumors. In addition, the main challenges and development trends of the COFs in the field of tumor therapy are discussed. This review could inspire research to design more effective COFs nano-drug delivery systems and promote the development of tumor therapy.

Cite this article

Tao Wang , Lu Zhao , Kewei Wang , Yunfeng Bai , Feng Feng . Research Progress on the Synthesis of Covalent Organic Frameworks and Their Applications in Tumor Therapy[J]. Acta Chimica Sinica, 2021 , 79(5) : 600 -613 . DOI: 10.6023/A20120578

References

[1]
Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. CA Cancer J. Clin. 2021, 71,7.
[2]
Lu, H.; Goodell, V.; Disis, M. L. J. Proteome Res. 2008, 7,1388.
[3]
Xifre-Perez, E.; Guaita-Esteruelas, S.; Baranowska, M.; Pallares, J.; Masana, L.; Marsal, L. F. ACS Appl. Mater. Interfaces 2015, 7,18600.
[4]
Bai, Y.; Zhang, Z.; Cheng, L.; Wang, R.; Chen, X.; Kong, Y.; Feng, F.; Ahmad, N.; Li, L.; Liu, X. J. Biol. Chem. 2019, 294,9911.
[5]
Li, R.; Feng, F.; Chen, Z.-Z.; Bai, Y.-F.; Guo, F.-F.; Wu, F.-Y.; Zhou, G. Talanta 2015, 140,143.
[6]
Zhang, Y.; Bai, Y.; Feng, F.; Shuang, S. Anal. Methods-UK 2016, 8,6131.
[7]
Bai, Y.; Zhang, H.; Zhao, L.; Wang, Y.; Chen, X.; Zhai, H.; Tian, M.; Zhao, R.; Wang, T.; Xu, H.; Feng, F. Talanta 2020, 221,121451.
[8]
Gajewski, T. F. Curr. Opin. Immunol. 2012, 6,242.
[9]
Cao, J.; Huang, D.; Peppas, N. A. Adv. Drug Deliver. Rev. 2020, 167,170.
[10]
Fang, J.; Islam, W.; Maeda, H. Adv. Drug Deliver. Rev. 2020, 157,142.
[11]
Gu, Z.; Da Silva, C. G.; Van der Maaden, K.; Ossendorp, F.; Cruz, L. J. Pharmaceutics 2020, 12,1054.
[12]
Martincic, M.; Tobias, G. Expert Opin. Drug Deliv. 2015, 12,563.
[13]
Kesharwani, P.; Jain, K.; Jain, N. K. Prog. Polym. Sci. 2014, 39,268.
[14]
Kwon, H. J.; Shin, K.; Soh, M.; Chang, H.; Kim, J.; Lee, J.; Ko, G.; Kim, B. H.; Kim, D.; Hyeon, T. Adv. Mater. 2018, 30,e1704290.
[15]
Wu, M.-X.; Yang, Y.-W. Adv. Mater. 2017, 29,1606134.
[16]
Huang, H.; Jiang, R.; Feng, Y.; Ouyang, H.; Zhou, N.; Zhang, X.; Wei, Y. Nanoscale 2020, 12,1325.
[17]
Scicluna, M. C.; Vella-Zarb, L. ACS Appl. Nano Mater. 2020, 3,3097.
[18]
Sun, T.; Lei, W.; Ma, Y.; Zhang, Y.-B. Chinese J. Chem. 2020, 38,1153.
[19]
Mei, P.; Zhang, Y.; Feng, X. Acta Chim. Sinica 2020, 78,1041. (in Chinese).
[19]
( 梅佩, 张媛媛, 冯霄, 化学学报, 2020, 78, 1041.)
[20]
Yu, G.; Wang, C. Chinese J. Org. Chem. 2020, 40,1437. (in Chinese).
[20]
( 于歌, 汪成, 有机化学, 2020, 40,1437.)
[21]
Jiang, C.; Feng, X.; Wang, B. Acta Chim. Sinica 2020, 78,466. (in Chinese).
[21]
( 蒋成浩, 冯霄, 王博, 化学学报, 2020, 78,466.)
[22]
Liu, J.; Zhang, M.; Wang, N.; Wang, C.; Ma, L. Acta Chim. Sinica 2020, 78,311. (in Chinese).
[22]
( 刘建国, 张明月, 王楠, 王晨光, 马隆龙, 化学学报, 2020, 78,311.)
[23]
Wang, W. Chinese J. Org. Chem. 2020, 40,545. (in Chinese).
[23]
( 王为, 有机化学, 2020, 40,545.)
[24]
Wang, Y.; Liu, H.; Zhu, X. Acta Chim. Sinica 2020, 78,746. (in Chinese).
[24]
( 王友付, 刘航海, 朱新远, 化学学报, 2020, 78,746.)
[25]
Guan, Q.; Zhou, L.-L.; Li, W.-Y.; Li, Y.-A.; Dong, Y.-B. Chem. Eur. J. 2020, 26,5583.
[26]
Feng, L.; Qian, C.; Zhao, Y. ACS Mater. Lett. 2020, 2,1074.
[27]
Bhunia, S.; Deo, K. A.; Gaharwar, A. K. Adv. Funct. Mater. 2020, 30,2002046.
[28]
Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310,1166.
[29]
El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science 2007, 316,268.
[30]
Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. J. Am. Chem. Soc. 2015, 137,8352.
[31]
Vyas, V. S.; Vishwakarma, M.; Moudrakovski, I.; Haase, F.; Savasci, G.; Ochsenfeld, C.; Spatz, J. P.; Lotsch, B. V. Adv. Mater. 2016, 28,8749.
[32]
Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Chem. Rev. 2020, 120,8814.
[33]
Ding, X.; Guo, J.; Feng, X.; Honsho, Y.; Guo, J.; Seki, S.; Maitarad, P.; Saeki, A.; Nagase, S.; Jiang, D. Angew. Chem. Int. Ed. 2011, 50,1289.
[34]
Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. Angew. Chem. Int. Ed. 2013, 52,3770.
[35]
Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Nat. Commun. 2014, 5,4503.
[36]
Jiang, Y.; Huang, W.; Wang, J.; Wu, Q.; Wang, H.; Pan, L.; Liu, X. J. Mater. Chem. A 2014, 2,8201.
[37]
Thote, J.; Aiyappa, H. B.; Kumar, R. R.; Kandambeth, S.; Biswal, B. P.; Shinde, D. B.; Roy, N. C.; Banerjee, R. IUCrJ 2016, 3,402.
[38]
Wang, K.; Jia, Z.; Bai, Y.; Wang, X.; Hodgkiss, S. E.; Chen, L.; Chong, S. Y.; Wang, X.; Yang, H.; Xu, Y.; Feng, F.; Ward, J. W.; Cooper, A. I. J. Am. Chem. Soc. 2020, 142,11131.
[39]
Zhu, L. J.; Zhang, Y. B. Molecules 2017, 22,1149.
[40]
James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D.M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Chem. Soc. Rev. 2012, 41,413.
[41]
Zhang, P.; Dai, S. J. Mater. Chem. A 2017, 5,16118.
[42]
Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135,5328.
[43]
Das, G.; Shinde, D. B.; Kandambeth, S.; Biswal, B. P.; Banerjee, R. Chem. Commun. 2014, 50,12615.
[44]
Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Chem. Mater. 2009, 21,204.
[45]
Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Adv. Mater. 2012, 24,2357.
[46]
Ritchie, L. K.; Trewin, A.; Reguera-Galan, A.; Hasell, T.; Cooper, A. I. Micropor. Mesopor. Mat. 2010, 132,132.
[47]
Vitaku, E.; Dichtel, W. R. J. Am. Chem. Soc. 2017, 139,12911.
[48]
Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2008, 47,3450.
[49]
Hao, Q.; Zhao, C.; Sun, B.; Lu, C.; Liu, J.; Liu, M.; Wan, L.-J.; Wang, D. J. Am. Chem. Soc. 2018, 140,12152.
[50]
Matsumoto, M.; Valentino, L.; Stiehl, G. M.; Balch, H. B.; Corcos, A. R.; Wang, F.; Ralph, D. C.; Marinas, B. J.; Dichtel, W. R. Chem 2018, 4,308.
[51]
Liu, J.; Zan, W.; Li, K.; Yang, Y.; Bu, F.; Xu, Y. J. Am. Chem. Soc. 2017, 139,11666.
[52]
Zhou, D.; Tan, X.; Wu, H.; Tian, L.; Li, M. Angew. Chem. Int. Ed. 2019, 58,1376.
[53]
Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42,548.
[54]
Ding, S.-Y.; Cui, X.-H.; Feng, J.; Lu, G.; Wang, W. Chem. Commun. 2017, 53,11956.
[55]
Medina, D. D.; Rotter, J. M.; Hu, Y.; Dogru, M.; Werner, V.; Auras, F.; Markiewicz, J. T.; Knochel, P.; Bein, T. J. Am. Chem. Soc. 2015, 137,1016.
[56]
Guan, Q.; Wang, G.-B.; Zhou, L.-L.; Li, W.-Y.; Dong, Y.-B. Nanoscale Adv. 2020, 2,3656.
[57]
Berlanga, I.; Ruiz-González, M. L.; González-Calbet, J. M.; Fierro, J. L.G.; Mas-BallestéR.; Zamora, F. Small 2011, 7,1207.
[58]
Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135,17853.
[59]
Wang, K.; Zhang, Z.; Lin, L.; Chen, J.; Hao, K.; Tian, H.; Chen, X. Chem. Mater. 2019, 31,3313.
[60]
Kong, W.; Wan, J.; Namuangruk, S.; Guo, J.; Wang, C. Sci. Rep. 2018, 8,5529.
[61]
Dong, J.; Li, X.; Peh, S. B.; Yuan, Y. D.; Wang, Y.; Ji, D.; Peng, S.; Liu, G.; Ying, S.; Yuan, D.; Jiang, J.; Ramakrishna, S.; Zhao, D. Chem. Mater. 2019, 31,146.
[62]
Smith, B. J.; Parent, L. R.; Overholts, A. C.; Beaucage, P. A.; Bisbey, R. P.; Chavez, A. D.; Hwang, N.; Park, C.; Evans, A. M.; Gianneschi, N. C.; Dichtel, W. R. ACS Central Sci. 2017, 3,58.
[63]
Das, G.; Prakasam, T.; Addicoat, M. A.; Sharma, S. K.; Ravaux, F.; Mathew, R.; Baias, M.; Jagannathan, R.; Olson, M. A.; Trabolsi, A. J. Am. Chem. Soc. 2019, 141,19078.
[64]
Matsumoto, M.; Dasari, R. R.; Ji, W.; Feriante, C. H.; Parker, T. C.; Marder, S. R.; Dichtel, W. R. J. Am. Chem. Soc. 2017, 139,4999.
[65]
Li, M.; Qiao, S.; Zheng, Y.; Andaloussi, Y. H.; Li, X.; Zhang, Z.; Li, A.; Cheng, P.; Ma, S.; Chen, Y. J. Am. Chem. Soc. 2020, 142,6675.
[66]
Tan, J.; Namuangruk, S.; Kong, W. F.; Kungwan, N.; Guo, J.; Wang, C. C. Angew. Chem. Int. Ed. 2016, 55,13979.
[67]
Bai, L.; Phua, S. Z.; Lim, W. Q.; Jana, A.; Luo, Z.; Tham, H. P.; Zhao, L.; Gao, Q.; Zhao, Y. Chem. Commun. 2016, 52,4128.
[68]
Mitra, S.; Sasmal, H. S.; Kundu, T.; Kandambeth, S.; Illath, K.; Diaz Diaz, D.; Banerjee, R. J. Am. Chem. Soc. 2017, 139,4513.
[69]
Zhang, G.; Li, X.; Liao, Q.; Liu, Y.; Xi, K.; Huang, W.; Jia, X. Nat. Commun. 2018, 9,2785.
[70]
Liu, S.; Hu, C.; Liu, Y.; Zhao, X.; Pang, M.; Lin, J. Chem. Eur. J. 2019, 25,4315.
[71]
Lal, S.; Clare, S. E.; Halas, N. J. Acc. Chem. Res. 2008, 41,1842.
[72]
Gallego, N. C.; Klett, J. W. Carbon 2003, 41,1461.
[73]
Mi, Z.; Yang, P.; Wang, R.; Unruangsri, J.; Yang, W.; Wang, C.; Guo, J. J. Am. Chem. Soc. 2019, 141,14433.
[74]
Lan, M.; Zhao, S.; Liu, W.; Lee, C.-S.; Zhang, W.; Wang, P. Adv. Healthc. Mater. 2019, 8,1900132.
[75]
Kharkwal, G. B.; Sharma, S. K.; Huang, Y.-Y.; Dai, T.; Hamblin, M. R. Lasers Surg. Med. 2011, 43,755.
[76]
Thakor, A. S.; Gambhir, S. S. CA-Cancer J. Clin. 2013, 63,395.
[77]
Bhanja, P.; Mishra, S.; Manna, K.; Mallick, A.; Das Saha, K.; Bhaumik, A. ACS Appl. Mater. Interfaces 2017, 9,31411.
[78]
Zhou, Y.; Liu, S. N.; Hu, C. L.; Cai, L. H.; Pang, M. L. J. Mater. Chem. B 2020, 8,5451.
[79]
Guan, Q.; Fu, D.-D.; Li, Y.-A.; Kong, X.-M.; Wei, Z.-Y.; Li, W.-Y.; Zhang, S.-J.; Dong, Y.-B. iScience 2019, 14,180.
[80]
Zhang, Y.; Zhang, L.; Wang, Z.; Wang, F.; Kang, L.; Cao, F.; Dong, K.; Ren, J.; Qu, X. Biomaterials 2019, 223,119462.
[81]
Zhang, L.; Wang, S. B.; Zhou, Y.; Wang, C.; Zhang, X. Z.; Deng, H. X. Angew. Chem. Int. Ed. 2019, 58,14213.
[82]
Cai, L.; Hu, C.; Liu, S.; Zhou, Y.; Pang, M.; Lin, J. Sci. China Mater. 2021, 64,488.
[83]
Wang, P.; Zhou, Z.; Guan, K. S.; Wang, Y. J.; Fu, X. Y.; Yang, Y.; Yin, X.; Song, G. S.; Zhang, X. B.; Tan, W. H. Chem. Sci. 2020, 11,1299.
[84]
Chen, Z. K.; Liu, L. L.; Liang, R. J.; Luo, Z. Y.; He, H. M.; Wu, Z. H.; Tian, H.; Zheng, M. B.; Ma, Y. F.; Cai, L. T. ACS Nano 2018, 12,8633.
[85]
Li, X. S.; Kwon, N.; Guo, T.; Liu, Z.; Yoon, J. Angew. Chem. Int. Ed. 2018, 57,11522.
[86]
Reisch, A.; Klymchenko, A. S. Small 2016, 12,1968.
[87]
Yang, G.; Xu, L.; Chao, Y.; Xu, J.; Sun, X.; Wu, Y.; Peng, R.; Liu, Z. Nat. Commun. 2017, 8,902.
[88]
Zhang, H.; Li, G.; Liao, C.; Cai, Y.; Jiang, G. J. Mater. Chem. B 2019, 7,2398.
[89]
Feng, J.; Ren, W.-X.; Kong, F.; Dong, Y.-B. Inorg. Chem. Front. 2021, 8,848.
[90]
Gan, S.; Tong, X.; Zhang, Y.; Wu, J.; Hu, Y.; Yuan, A. Adv. Funct. Mater. 2019, 29,1902757.
[91]
Wang, D.; Zhang, Z.; Lin, L.; Liu, F.; Wang, Y.; Guo, Z.; Li, Y.; Tian, H.; Chen, X. Biomaterials 2019, 223,119459.
[92]
Guan, Q.; Zhou, L.-L.; Li, Y.-A.; Li, W.-Y.; Wang, S.; Song, C.; Dong, Y.-B. ACS Nano 2019, 13,13304.
[93]
Hu, C.; Zhang, Z.; Liu, S.; Liu, X.; Pang, M. ACS Appl. Mater. Interfaces 2019, 11,23072.
[94]
Liu, S.; Zhou, Y.; Hu, C.; Cai, L.; Pang, M. ACS Appl. Mater. Interfaces 2020, 12,43456.
[95]
Wang, K.; Zhang, Z.; Lin, L.; Hao, K.; Chen, J.; Tian, H.; Chen, X. ACS Appl. Mater. Interfaces 2019, 11,39503.
[96]
Wang, S.-B.; Chen, Z.-X.; Gao, F.; Zhang, C.; Zou, M.-Z.; Ye, J.-J.; Zeng, X.; Zhang, X.-Z. Biomaterials 2020, 234,119772.
[97]
Guan, Q.; Zhou, L.-L.; Lv, F.-H.; Li, W.-Y.; Li, Y.-A.; Dong, Y.-B. Angew. Chem. Int. Ed. 2020, 59,18042.
[98]
Benyettou, F.; Das, G.; Nair, A. R.; Prakasam, T.; Shinde, D. B.; Sharma, S. K.; Whelan, J.; Lalatonne, Y.; Traboulsi, H.; Pasricha, R.; Abdullah, O.; Jagannathan, R.; Lai, Z.; Motte, L.; Gándara, F.; Sadler, K. C.; Trabolsi, A. J. Am. Chem. Soc. 2020, 142,18782.
Outlines

/