Review

Research Progress of Key Materials for Sodium-selenium Batteries

  • Bixia Lin ,
  • Yingshan Huang ,
  • Shuai Chen ,
  • Zhenyu Xing
Expand
  • a School of Chemistry, South China Normal University, Guangzhou 510006, China
    b Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China

Received date: 2020-12-20

  Online published: 2021-02-22

Supported by

National Natural Science Foundation of China(22002045); Guangdong Basic and Applied Basic Research Foundation(2020A1515011549); Education Department of Guangdong Province(2018KQNCX059)

Abstract

Sodium-selenium batteries show some advantages in stationary energy storage, benefitting from selenium cathode of high conductivity (1×10–3 S/m), high volume-specific capacity (3253 mAh/cm3), as well as sodium anode of abundant resources and low cost. However, the serious shuttle effect and volume change of selenium cathode greatly limit the further development. Herein, basic mechanism and current problems of sodium-selenium batteries are summarized, and the current research progress are discussed in detail. In end, future development of sodium-selenium is proposed, in order to provide some new perspectives.

Cite this article

Bixia Lin , Yingshan Huang , Shuai Chen , Zhenyu Xing . Research Progress of Key Materials for Sodium-selenium Batteries[J]. Acta Chimica Sinica, 2021 , 79(5) : 641 -648 . DOI: 10.6023/A20120576

References

[1]
Khalil, H. B.; Zaidi, S. J. H. Renew. Sust. Energ. Rev. 2014, 31,194.
[2]
Vlachos, D. G.; Caratzoulas, S. Chem. Eng. Sci. 2010, 65,18.
[3]
Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2017, 16,16.
[4]
Jacobson, M. Z. Energ. Environ. Sci. 2008, 650,723.
[5]
Bisio, G.; Rubatto, G.; Martini, R. Energy 2000, 25,1047.
[6]
Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Prog. Nat. Sci. 2009, 19,291.
[7]
Ibrahim, H.; Ilinca, A.; Perron, J. Renew. Sust. Energ. Rev. 2008, 12,1221.
[8]
Divya, K. C.; Stergaard, J. Electr. Pow. Syst. Res. 2009, 79,511.
[9]
Xing, Z. Y.; Wang, S.; Yu, A. P.; Chen, W. Z. Nano Energy 2018, 50,229.
[10]
Su, D.; Zou, L.; Han, D. D.; Lv, X. L.; Zou, X. Electr. Meas. Instrum. 2017, 54,83.
[10]
( 苏荻, 邹黎, 韩冬冬, 吕晓丽, 邹雪, 电测与仪表, 2017, 54,83.)
[11]
Wang, H.; Jiang, Y.; Manthiram, A. Energy Storage Mater. 2018, 18,2405.
[12]
Poborchii, V. V.; Kolobov, A. V. Chem. Phys. Lett. 1997, 280,17.
[13]
Li, Q. Q.; Liu, H. G.; Yao, Z. P.; Cheng, J. P.; Li, T. H.; Li, Y.; Wolverton, C.; Wu, J. S.; Dravid, V. P. ACS Nano 2016, 10(9),8788.
[14]
Xu, Q. J.; Yang, T. T.; Gao, W.; Zhan, R. M.; Zhang, Y. Q.; Bao, S. J.; Li, X. Y.; Chen, Y. M.; Xu, M. W. J. Power Sources 2019, 443,227245.
[15]
Deng, Y. R.; Gong, L. L.; Pan, Y. L.; Cheng, X. D.; Zhang, H. P. Nanoscale 2019, 11,11671.
[16]
Luo, W.; Lin, C. F.; Zhao, O.; Noked, M.; Zhang, Y.; Rubloff, G. W.; Hu, L. B. Adv. Energy Materials. 2017, 7,1601526.
[17]
Zeng, L. C.; Zeng, W. C.; Jiang, Y.; Wei, X.; Li, W. H.; Yang, C. L.; Zhu, Y. W.; Yu, Y. Advanced Energy Mater. 2015, 5,1401377.
[18]
Xing, Z. Y.; Tan, G. Q.; Yuan, Y. F.; Wang, B.; Ma, L.; Xie, J.; Li, Z. S.; Wu, T. P.; Ren, Y.; Shahbazian-Yassar, R.; Lu, J.; Ji, X. L.; Chen, Z. W. Adv. Mater. 2020, 32,2002403.
[19]
Xing, Z. Y.; Li, G. R.; Serubbabel, S.; Chen, Z. W. Nano Energy 2018, 54,1.
[20]
Zeng, L. C.; Li, W. H.; Jiang, Y.; Yu, Y. Rare Metals 2017, 36,339.
[21]
Xing, Z. Y.; Deng, Y. P.; Serubbabel, S.; Tan, G. Q.; Li, A. J.; Li, J. D.; Niu, Y.; Li, N.; Su, D.; Lu, J.; Chen, Z. W. Nano Energy 2019, 65,104051.
[22]
Xing, Z. Y.; Wang, B.; Halsted, J. K.; Subashchandrabose, R.; Stickleb, W. F.; Ji, X. L. Chem. Commun. 2015, 51,1969.
[23]
Xing, Z. Y.; Gao, N. S. J.; Qi, Y. T.; Ji, X. L.; Liu, H. Carbon 2017, 115,271.
[24]
Xing, Z. Y.; Qi, Y. T.; Tian, Z. Q.; Xu, J.; Yuan, Y. F.; Bommier, C.; Lu, J.; Tong, W.; Jiang, D,; Ji, X. L. Chem. Mater. 2017, 29,7288.
[25]
Xing, Z. Y.; Luo, X. Y.; Qi, Y. T.; Stickle, W. F.; Amine, K.; Lu, J.; Ji, X. L. ChemNanoMat 2016, 2,692.
[26]
Yuan, B. B.; Sun, X. Z.; Zeng, L. C.; Yu, Y.; Wang, Q. S. Small 2018, 14,1703252.
[27]
Yang, X. M.; Wang, H. K.; Yu, D. Y. W.; Rogach, A. L. Adv. Funct. Mater. 2018, 28,1706609.
[28]
Ding, J.; Zhou, H.; Zhang, H. L.; Stephenson, T.; Li, Z.; Karpuzov, D.; Mitlin, D. Energ. Environ. Sci. 2017, 10,153.
[29]
Guo, B. R.; Mi, H. W.; Zhang, P. X.; Ren, X. Z.; Li, Y. L. Nanoscale Res. Lett. 2019, 14,30.
[30]
Yang, X. M.; Wang, J. K.; Wang, S.; Wang, H. K.; Tomanec, O.; Zhi, C. Y.; Zboril, R.; Wu, Y. W.; Rogach, A. ACS Nano 2018, 12,7397.
[31]
Wang, H.; Jiang, Y.; Manthiram, A. Adv. Energy Mater. 2018, 8,1.
[32]
Ding, J.; Zhou, H.; Zhang, H. L.; Tong, L. Y.; Mitlin, D. Adv. Energy Mater. 2017, 1701918,1.
[33]
Zhang, F.; Xiong, P.; Guo, X.; Zhang, J. Q.; Yang, W.; Wu, W. J.; Liu, H.; Wang, G. X. Energy Storage Mater. 2019, 19,251.
[34]
Xu, Q. J.; Liu, T.; Hu, L. Y.; Dai, C. L.; Zhang, Y. Q.; Li, Y.; Liu, D. Y.; Xu, M. W. ACS Appl. Mater. Inter. 2017, 9,41339.
[35]
Xu, Q. J.; Liu, H.; Du, W. Y.; Zhan, L. Y.; Hu, L. Y.; Bao, S. J.; Dai, C. L.; Liu, F.; Xu, M. W. Electrochim. Acta 2018, 276,21.
[36]
Li, S. Q.; Yang, H.; Xu, R.; Gong, Y.; Gu, L.; Yu, Y. Mater. Chem. Front. 2018, 2,1574.
[37]
Dong, W.; Chen, H.; Xia, H.; Yu, W.; Song, J.; Wu, S.; Deng, Z.; Hu, Z. Y.; Hasan, T.; Li, Y.; Wang, H.; Chen, L.; Su, B. L. J. Mater. Chem. A 2018, 6,22790.
[38]
Zhao, X. S.; Yin, L. C.; Zhang, T.; Zhang, M. Nano Energy 2018, 49,137.
[39]
Zeng, L. C.; Wei, X.; Wang, J. Q.; Jiang, Y. J. Power Sources 2015, 281,461.
Outlines

/