Review

Research Progress on Surface-Enhanced Raman Spectroscopy Technique for the Detection of microRNA

  • Rongnan Yi ,
  • Yan Wu
Expand
  • a Criminal Technology Department, Hunan Police Academy, Changsha 410138, China
    b College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China

Received date: 2021-01-19

  Online published: 2021-03-30

Supported by

National Natural Science Foundation of China(21804011)

Abstract

microRNA is an endogenous non-coding single-stranded RNA with a length of about 18~24 nucleotides. The latest research has found that the occurrence of many diseases and tumors is closely related to the level of microRNA expression, and microRNA is expected to become a new tumor marker and a new target for cancer treatment. Therefore, the development of high sensitivity, high specificity, and simple and rapid microRNA detection methods is greatly significant for biomedical research and early diagnosis of cancer. Surface-enhanced Raman spectroscopy (SERS) technique has great application value in the field of early cancer diagnosis due to its unique advantages such as high sensitivity, fast detection speed, fingerprint recognition, and low water interference. The latest research progress of SERS technique in microRNA detection is summarized in this review. Finally the main challenges of SERS technique in bioassay are discussed and the future development trend is proposed.

Cite this article

Rongnan Yi , Yan Wu . Research Progress on Surface-Enhanced Raman Spectroscopy Technique for the Detection of microRNA[J]. Acta Chimica Sinica, 2021 , 79(6) : 694 -704 . DOI: 10.6023/A21010017

References

[1]
Lu, J.; Getz, G.; Miska, E. A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B. L.; Mak, R. H.; Ferrando, A. A.; Downing, J. R.; Jacks, T.; Horvitz, H. R.; Golub, T. R. Nature 2005, 435, 834.
[2]
Ma, W.; Fu, P.; Sun, M.; Xu, L.; Kuang, H.; Xu, C. J. Am. Chem. Soc. 2017, 139, 11752.
[3]
Rupaimoole, R.; Slack, F. J. Nature Rev. Drug Discov. 2017, 16, 203.
[4]
Válóczi, A.; Hornyik, C.; Varga, N.; Burgyán, J.; Kauppinen, S.; Havelda, Z. Nucleic Acids Res. 2004, 32, e175.
[5]
Chen, C.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z.; Lee, D. H.; Nguyen, J. T.; Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R.; Lao, K. Q.; Livak, K. J.; Guegler, K. J. Nucleic Acids Res. 2005, 33, e179.
[6]
Lee, J. M.; Jung, Y. Angew. Chem. Int. Ed. 2011, 50, 12487.
[7]
Raman, C. V.; Krishnan, K. S. Nature 1928, 121, 501.
[8]
Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Chem. Rev. 2018, 118, 4946.
[9]
Wu, H. M.S. Thesis, Anhui Jianzhu University, Hefei, 2020. (in Chinese)
[9]
(吴焕乐, 硕士论文, 安徽建筑大学, 合肥, 2020.)
[10]
Hu, S.; Zhang, J. Environmental Chem. 2020, 39, 2459. (in Chinese)
[10]
(胡舒馨, 张建锋, 环境化学, 2020, 39, 2459.)
[11]
Cheng, J.; Wang, P.; Su, X. Acta Chim. Sinica 2019, 77, 977. (in Chinese)
[11]
(程劼, 王培龙, 苏晓鸥, 化学学报, 2019, 77, 977.)
[12]
Dong, R.; Li, S.; Lin, D.; Chen, H.; Yang, L. Sci. Sin. Chim. 2021, 51, 294. (in Chinese)
[12]
(董荣录, 李绍飞, 林东岳, 陈慧, 杨良保, 中国科学: 化学, 2021, 51, 294.)
[13]
Li, F.; Xu, W.; Liu, J.; Hu, X.; Xu, T. Guangzhou Chem. Industry. 2018, 46, 9. (in Chinese)
[13]
(李帆, 徐维平, 刘建楠, 胡小燕, 徐婷娟, 广州化工, 2018, 46, 9.)
[14]
Liu, S.; Huo, Y. P.; Kang, W. J.; Gao, Z. X. Sci. Sin. Chim. 2020, 65, 1448. (in Chinese)
[14]
(刘厦, 霍亚鹏, 康维钧, 高志贤, 中国科学: 化学, 2020, 65, 1448.)
[15]
Yi, Y. Ph.D. Dissertation, Zhejiang University of Technology, Hangzhou, 2019. (in Chinese)
[15]
(易喻, 博士论文, 浙江工业大学, 杭州, 2019.)
[16]
He, H.; Zhou, L.; Liu, Z. Acta Chim. Sinica 2021, 79, 45. (in Chinese)
[16]
(贺晖, 周玲俐, 刘震, 化学学报, 2021, 79, 45.)
[17]
Liu, L.; Shangguan, C.; Guo, J.; Ma, K.; Jiao, S.; Yao, Y.; Wang, J. Adv. Opt. Mater. 2020, 8, 2001214.
[18]
Wen, S.; Su, Y.; Dai, C.; Jia, J.; Fan, G.-C.; Jiang, L.-P.; Song, R.-B.; Zhu, J.-J. Anal. Chem. 2019, 91, 12298.
[19]
Wu, Y.; He, Y.; Yang, X.; Yuan, R.; Chai, Y. Sens. Actuators B: Chem. 2018, 275, 260.
[20]
Wang, S.; Wu, C.; Luo, J.; Luo, X.; Yuan, R.; Yang, X. Microchim. Acta 2020, 187, 460.
[21]
Pang, Y.; Wang, C.; Lu, L.; Wang, C.; Sun, Z.; Xiao, R. Biosens. Bioelectron. 2019, 130, 204.
[22]
Pang, Y.; Wang, C.; Wang, J.; Sun, Z.; Xiao, R.; Wang, S. Biosens. Bioelectron. 2016, 79, 574.
[23]
Hu, Y.; Wu, C.; Huang, S.; Luo, X.; Yuan, R.; Yang, X. Talanta 2021, 228, 122240.
[24]
Lee, T.; Wi, J.-S.; Oh, A.; Na, H.-K.; Lee, J.; Lee, K.; Lee, T. G.; Haam, S. Nanoscale 2018, 10, 3680.
[25]
Meng, D.; Ma, W.; Wu, X.; Xu, C.; Kuang, H. Small 2020, 16, 2000003.
[26]
Liu, J.; Zheng, T.; Tian, Y. Angew. Chem. Int. Ed. 2019, 58, 7757.
[27]
Su, J.; Wang, D.; N?rbel, L.; Shen, J.; Zhao, Z.; Dou, Y.; Peng, T.; Shi, J.; Mathur, S.; Fan, C.; Song, S. Anal. Chem. 2017, 89, 2531.
[28]
Guo, R.; Yin, F.; Sun, Y.; Mi, L.; Shi, L.; Tian, Z.; Li, T. ACS Appl. Mater. Interfaces 2018, 10, 25770.
[29]
Sun, Y.; Li, T. Anal. Chem. 2018, 90, 11614.
[30]
Zhang, H.; Fu, C.; Yi, Y.; Zhou, X.; Zhou, C.; Ying, G.; Shen, Y.; Zhu, Y. Anal. Methods 2018, 10, 624.
[31]
Zhang, H.; Fu, C.; Wu, S.; Shen, Y.; Zhou, C.; Neng, J.; Yi, Y.; Jin, Y.; Zhu, Y. Anal. Methods 2019, 11, 783.
[32]
Zhang, H.; Yi, Y.; Zhou, C.; Ying, G.; Zhou, X.; Fu, C.; Zhu, Y.; Shen, Y. RSC Adv. 2017, 7, 52782.
[33]
Liu, H.; Li, Q.; Li, M.; Ma, S.; Liu, D. Anal. Chem. 2017, 89, 4776.
[34]
Si, Y.; Xu, L.; Wang, N.; Zheng, J.; Yang, R.; Li, J. Anal. Chem. 2020, 92, 2649.
[35]
Liang, Z.; Zhou, J.; Petti, L.; Shao, L.; Jiang, T.; Qing, Y.; Xie, S.; Wu, G. Analyst 2019, 144, 1741.
[36]
Xu, L.; Gao, Y.; Kuang, H.; Liz-Marzán, L. M.; Xu, C. Angew. Chem. Int. Ed. 2018, 57, 10544.
[37]
Ma, W.; Fu, P.; Sun, M.; Xu, L.; Kuang, H.; Xu, C. J. Am. Chem. Soc. 2017, 139, 11752.
[38]
Ma, W.; Sun, M.; Fu, P.; Li, S.; Xu, L.; Kuang, H.; Xu, C. Adv. Mater. 2017, 29, 1703410.
[39]
Zhang, Q.; Liu, J.; Dong, Y.; Li, W.; Xing, R.; Ma, Y.; Liu, Z. ACS Appl. Nano Mater. 2019, 2, 3960.
[40]
Zhou, W.; Tian, Y.-F.; Yin, B.-C.; Ye, B.-C. Anal. Chem. 2017, 89, 6120.
[41]
Schechinger, M.; Marks, H.; Mabbott, S.; Choudhury, M.; Cote, G. Analyst 2019, 144, 4033.
[42]
Wang, H.-N.; Crawford, B. M.; Norton, S. J.; Vo-Dinh, T. J. Phys. Chem. B 2019, 123, 10245.
[43]
Han, Y.; Qiang, L.; Gao, Y.; Gao, J.; He, Q.; Liu, H.; Han, L.; Zhang, Y. Appl. Surface Sci. 2021, 541, 148456.
[44]
Wang, X.; liu, B.; Xiao, M.; Zou, Y.; Lai, W.; Pei, H.; Alam, M. F.; Zhang, W.; Wan, Y.; Li, L. Biosens. Bioelectron. 2020, 156, 112130.
[45]
He, M.-Q.; Chen, S.; Yao, K.; Wang, K.; Yu, Y.-L.; Wang, J.-H. Small Methods 2019, 3, 1900017.
[46]
Jiang, S.; Li, Q.; Wang, C.; Pang, Y.; Sun, Z.; Xiao, R. ACS Sens. 2021, 6, 852.
[47]
Cheng, L.; Zhang, Z.; Zuo, D.; Zhu, W.; Zhang, J.; Zeng, Q.; Yang, D.; Li, M.; Zhao, Y. ACS Appl. Mater. Interfaces 2018, 10, 34869.
[48]
Cao, X.; Wang, Z.; Bi, L.; Bi, C.; Du, Q. Nanoscale 2020, 12, 1513.
[49]
Ye, L.-P.; Hu, J.; Liang, L.; Zhang, C.-Y. Chem. Commun. 2014, 50, 11883.
[50]
Zheng, J.; Ma, D.; Shi, M.; Bai, J.; Li, Y.; Yang, J.; Yang, R. Chem. Commun. 2015, 51, 16271.
[51]
Ye, S.; Wu, Y.; Zhai, X.; Tang, B. Anal. Chem. 2015, 87, 8242.
[52]
He, Y.; Yang, X.; Yuan, R.; Chai, Y. Anal. Chem. 2017, 89, 2866.
[53]
He, Y.; Yang, X.; Yuan, R.; Chai, Y. Anal. Chem. 2017, 89, 8538.
[54]
Yang, X.; Wang, S.; Wang, Y.; He, Y.; Chai, Y.; Yuan, R. ACS Appl. Mater. Interfaces 2018, 10, 12491.
[55]
Luo, W.; Wu, C.; Huang, S.; Luo, X.; Yuan, R.; Yang, X. Anal. Chem. 2020, 92, 15573.
[56]
He, Y.; Yang, X.; Yuan, R.; Chai, Y. J. Mater. Chem. B 2019, 7, 2643.
[57]
Ma, D.; Huang, C.; Zheng, J.; Tang, J.; Li, J.; Yang, J.; Yang, R. Biosens. Bioelectron. 2018, 101, 167.
[58]
Du, X.-Y.; Wu, S.-H.; Huang, X.-B.; Sun, J.-J. ACS Appl. Nano Mater. 2021, 4, 2565.
[59]
Wu, Y.; Li, Y.; Han, H.; Zhao, G.; Zhang, X. Anal. Biochem. 2019, 564-565, 16.
[60]
Wang, G.; Guo, Y.; Liu, Y.; Zhou, W.; Wang, G. ACS Sens. 2021, 6, 958.
[61]
Si, Y.; Xu, L.; Deng, T.; Zheng, J.; Li, J. ACS Sens. 2020, 5, 4009.
[62]
Liu, C.; Chen, C.; Li, S.; Dong, H.; Dai, W.; Xu, T.; Liu, Y.; Yang, F.; Zhang, X. Anal. Chem. 2018, 90, 10591.
[63]
Chen, J.; Wu, Y.; Fu, C.; Cao, H.; Tan, X.; Shi, W.; Wu, Z. Biosens. Bioelectron. 2019, 143, 111619.
[64]
Ye, S.; Li, X.; Wang, M.; Tang, B. Anal. Chem. 2017, 89, 5124.
[65]
Zhang, N.; Ye, S.; Wang, Z.; Li, R.; Wang, M. ACS Sens. 2019, 4, 924.
[66]
Zhang, J.; Zhang, H.; Ye, S.; Wang, X.; Ma, L. Anal. Chem. 2021, 93, 1466.
[67]
Masterson, A. N.; Liyanage, T.; Berman, C.; Kaimakliotis, H.; Johnson, M.; Sardar, R. Analyst 2020, 145, 4173.
[68]
Wang, Z.; Ye, S.; Zhang, N.; Liu, X.; Wang, M. Anal. Chem. 2019, 91, 5043.
[69]
Ma, L.; Ye, S.; Wang, X.; Zhang, J. ACS Sens. 2021, 6, 1392.
[70]
Mabbott, S.; Fernandes, S. C.; Schechinger, M.; Cote, G. L.; Faulds, K.; Mace, C. R.; Graham, D. Analyst 2020, 145, 983.
[71]
Wang, W.; Li, Y.; Nie, A.; Fan, G.-C.; Han, H. Analyst 2021, 146, 848.
[72]
Lee, T.; Mohammadniaei, M.; Zhang, H.; Yoon, J.; Choi, H. K.; Guo, S.; Guo, P.; Choi, J.-W. Adv. Sci. 2020, 7, 1902477.
[73]
Li, N.; Shen, F.; Cai, Z.; Pan, W.; Yin, Y.; Deng, X.; Zhang, X.; Machuki, J. O.; Yu, Y.; Yang, D.; Yang, Y.; Guan, M.; Gao, F. Small 2020, 16, 2005511.
[74]
Li, S.; Xu, L.; Ma, W.; Wu, X.; Sun, M.; Kuang, H.; Wang, L.; Kotov, N. A.; Xu, C. J. Am. Chem. Soc. 2016, 138, 306.
[75]
He, X.; Zeng, T.; Li, Z.; Wang, G.; Ma, N. Angew. Chem. Int. Ed. 2016, 55, 3073.
[76]
Kim, W. H.; Lee, J. U.; Song, S.; Kim, S.; Choi, Y. J.; Sim, S. J. Analyst 2019, 144, 1768.
[77]
Lee, J. U.; Kim, W. H.; Lee, H. S.; Park, K. H.; Sim, S. J. Small 2019, 15, 1804968.
[78]
Peng, L.; Zhou, J.; Liang, Z.; Zhang, Y.; Petti, L.; Jiang, T.; Gu, C.; Yang, D.; Mormile, P. Anal. Methods 2019, 11, 2960.
[79]
Kang, T.; Zhu, J.; Luo, X.; Jia, W.; Wu, P.; Cai, C. Anal. Chem. 2021, 93, 2519.
[80]
Shen, Y. T. Ph.D. Dissertation, Jilin University, Changchun, 2020. (in Chinese)
[80]
(申燕婷, 博士论文, 吉林大学, 长春, 2020.)
[81]
Liu, C. H. Ph.D. Dissertation, University of Science and Technology Beijing, Beijing, 2019. (in Chinese)
[81]
(刘聪慧, 博士论文, 北京科技大学, 北京, 2019.)
[82]
Si, Y. M. Ph.D. Dissertation, Hunan University, Changsha, 2019. (in Chinese)
[82]
(司艳美, 博士论文, 湖南大学, 长沙, 2019.)
[83]
He, Y. Ph.D. Dissertation, Southwest University, Chongqing, 2019. (in Chinese)
[83]
(何毅, 博士论文, 西南大学, 重庆, 2019.)
Outlines

/