Preparation of High Capacitive Performance Porous Carbon Assisted by Sodium Dodecyl Sulfate
Received date: 2021-01-12
Online published: 2021-04-14
Supported by
International Cooperation Foundation of Qilu University of Technology(QLUTGJHZ2018023); Innovation Training Program for College Students of Shandong Province in 2020(S202010431115); Undergraduate Academic Climbing Program of Qilu University of Technology (Shandong Academy of Sciences)
Benefiting from the inducing effect of sodium dodecyl sulfate (SDS) during the polymerization process of melamine and formaldehyde, melamine resin (MF)-derived porous carbon materials with high nitrogen and oxygen content have been synthesized via an annealing-followed water bath method in this work. To study the effect of SDS on the synthesis and properties of MF-derived porous carbon materials, the microstructure and composition of as-prepared samples are characterized by scanning electron microscopy (SEM), nitrogen adsorption/desorption and X-ray photoelectron spectroscopy (XPS). It can be seen from SEM images that sample of the best additive amount (MFC-SDS30) has the interpenetrating network structure, which is conducive to the rapid transfer of electrons and electrolyte ions. Nitrogen adsorption/desorption isotherms indicate that all samples have large specific surface area (SSA) and more micropores/mesopores, which are caused by the pyrolysis of SDS at 700 ℃. MFC-SDS30 has the largest SSA (387.86 m2?g-1) and a suitable pore size distribution (3.62 nm), which effectively improve the ion diffusion mobility and shorten the ion diffusion pathways. Interestingly, the XPS results show that MFC-SDS30 has high N atom content (15.5 at.%) and O atom content (6.5 at.%) without any additional doped treatment, so the abundant pseudocapacitance is contributed through the rapid N/O atoms redox reaction. Due to the above structural characteristics, MFC-SDS30 exhibits high specific capacitance value (Csp) of 349.6 F?g-1 at 1.0 A?g-1, and the Csp (254.6 F?g-1) at 20.0 A?g-1 still maintains 73.0% of that at 1.0 A?g-1, showing good capacitive performance as electrode material for supercapacitors (SCs). The Csp of MFC-SDS30 has almost no attenuation after 15000 cycles at 10.0 A?g-1, which possesses good cycle stability. Besides, the maximum energy density of symmetrical SCs based on MFC-SDS30 is 9.2 Wh?kg-1 at the power density of 250 W?kg-1, and the energy density still reaches 4.0 Wh?kg-1 at 5000 W?kg-1, which is better than many reported carbon materials. Therefore, MF-derived porous carbon materials assisted by SDS can be a promising electrode material for SCs by means of a green and efficient method.
Jianchao Jiao , Yuxin Zhu , Xiaowei Peng , Shihang Jin , Yunqiang Zhang , Mei Li . Preparation of High Capacitive Performance Porous Carbon Assisted by Sodium Dodecyl Sulfate[J]. Acta Chimica Sinica, 2021 , 79(6) : 778 -786 . DOI: 10.6023/A21010007
[1] | Díez, N.; Mysyk, R.; Zhang, W.; Goikolea, E.; Carriazo, D. J. Mater. Chem. A 2017, 5, 14619. |
[2] | Li, H.; Gong, Y.; Fu, C.; Zhou, H.; Yang, W.; Guo, M.; Li, M.; Kuang, Y. J. Mater. Chem. A 2017, 5, 3875. |
[3] | Kwon, H.; Han, D. J.; Lee, B. Y. RSC Adv. 2020, 10, 41495. |
[4] | Shinde, P. A.; Khan, M. F.; Rehman, M. A.; Jung, E.; Pham, Q. N.; Won, Y.; Jun, S. C. CrystEngComm 2020, 22, 6360. |
[5] | Du, J.; Liu, L.; Yu, Y.; Qin, Y.; Wu, H.; Chen, A. Nanoscale 2019, 11, 4453. |
[6] | Zhang, N.; Liu, F.; Xu, S.; Wang, F.; Yu, Q.; Liu, L. J. Mater. Chem. A 2017, 5, 22631. |
[7] | Yao, L.; Lin, J.; Yang, H.; Wu, Q.; Wang, D.; Li, X.; Deng, L.; Zheng, Z. Nanoscale 2019, 11, 11086. |
[8] | Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Chem. Soc. Rev. 2018, 47, 2680. |
[9] | Du, J.; Liu, L.; Yu, Y.; Lv, H.; Zhang, Y.; Chen, A. J. Mater. Chem. A 2019, 7, 1038. |
[10] | Yang, X.; Xu, J.; Chen, X. Chinese J. Chem. 2020, 38, 353. |
[11] | Xie, L.; Su, F.; Xie, L.; Guo, X.; Wang, Z.; Kong, Q.; Sun, G.; Ahmad, A.; Li, X.; Yi, Z.; Chen, C. Mater. Chem. Front. 2020, 4, 2610. |
[12] | Bi, R.; Mao, D.; Wang, J.; Yu, R.; Wang, D. Acta Chim. Sinica 2020, 78, 1200. (in Chinese) |
[12] | (毕如一, 毛丹, 王江艳, 于然波, 王丹, 化学学报, 2020, 78, 1200.) |
[13] | Liu, Z.; Du, Z.; Xing, W.; Yan, Z. Mater. Lett. 2014, 117, 273. |
[14] | Wang, C.; Wu, D.; Wang, H.; Gao, Z.; Xu, F.; Jiang, K. J. Power Sources 2017, 363, 375. |
[15] | Li, G.; Mao, K.; Liu, M.; Yan, M.; Zhao, J.; Zeng, Y.; Yang, L.; Wu, Q. Adv. Mater. 2020, 32, 2004632. |
[16] | Nasini, U. B.; Bairi, V. G.; Ramasahayam, S. K.; Bourdo, S. E.; Viswanathan, T.; Shaikh, A. U. J. Power Sources 2014, 250, 257. |
[17] | Tutunchi, A.; Kamali, R.; Kianvash, A. J. Adhesion 2015, 91, 663. |
[18] | Li, M.; Zhang, Y.; Yang, L.; Liu, Y.; Yao, J. Electrochim. Acta 2015, 166, 310. |
[19] | Fic, K.; Lota, G.; Frackowiak, E. Electrochim. Acta 2011, 1333, 206. |
[20] | Kailasam, K.; Jun, Y.; Katekomol, P.; Epping, J.; Hong, W.; Thomas, A. Chem. Mater. 2010, 22, 428. |
[21] | Zhang, H.; Wang, Y.; Liu, C.; Jiang, H. J. Alloy. Compd. 2012, 517, 1. |
[22] | Yang, J.; Zhai, Y.; Deng, Y.; Gu, D.; Li, Q.; Wu, Q.; Huang, Y.; Tu, B.; Zhao, D. J. Colloid Interface Sci. 2010, 342, 579. |
[23] | Li, W.; Li, B.; Shen, M.; Gao, Q.; Hou, J. Chem. Eng. J. 2020, 384, 123309. |
[24] | Fic, K.; Lota, G.; Frackowiak, E. Electrochim. Acta 2010, 55, 7484. |
[25] | Liu, F.; Wang, Z.; Zhang, H.; Jin, L.; Chu, X.; Gu, B.; Huang, H.; Yang, W. Carbon 2019, 149, 105. |
[26] | Zhu, D.; Jiang, J.; Sun, D.; Qian, X.; Wang, Y.; Li, L.; Wang, Z.; Chai, X.; Gan, L.; Liu, M. J. Mater. Chem. A 2018, 6, 12334. |
[27] | Mahbub, S.; Molla, M. R.; Saha, M.; Shahriar, I.; Hoque, M. A.; Halim, M. A.; Rub, M. A.; Khan, M. A.; Azum, N. J. Mol. Liq. 2019, 283, 263. |
[28] | Kim, J. H.; Ko, Y.; Kim, Y. A.; Kim, K. S.; Yang, C. J. Alloy. Compd. 2021, 855, 157282. |
[29] | Pang, Z.; Li, G.; Zou, X.; Sun, C.; Hu, C.; Tang, W.; Ji, L.; Hsu, H.; Xu, Q.; Lu, X. J. Energy Chem. 2021, 56, 512. |
[30] | Zheng, C.; Qian, W.; Cui, C.; Zhang, Q.; Jin, Y.; Zhao, M.; Tan, P. Carbon 2012, 50, 5167. |
[31] | Shan, Q.; Huo, W.; Shen, M.; Jing, C.; Peng, Y.; Pu, H.; Zhang, Y. Chinese Chem. Lett. 2020, 31, 2245. |
[32] | Liu, X.; Lai, C.; Xiao, Z.; Zou, S.; Liu, K.; Yin, Y.; Liang, T.; Wu, Z. ACS Appl. Energ. Mater. 2019, 2, 3185. |
[33] | Sevilla, M.; Fuertes, A. B. ACS Nano 2014, 8, 5069. |
[34] | Bo, X.; Xiang, K.; Zhang, Y.; Shen, Y.; Chen, S.; Wang, Y.; Xie, M.; Guo, X. J. Energy Chem. 2019, 39, 1. |
[35] | Zhang, H.; Wang, B.; Yu, X.; Li, J.; Shang, J.; Yu, J. Angew. Chem. Int. Ed. 2020, 132, 19558. |
[36] | Du, W.; Wang, X.; Zhan, J.; Sun, X.; Kang, L.; Jiang, F.; Zhang, X.; Shao, Q.; Dong, M.; Liu, H.; Murugadoss, V.; Guo, Z. Electrochim. Acta 2019, 296, 907. |
[37] | Yang, G.; Wang, Y.; Zhou, S.; Jia, S.; Xu, H.; Zang, J. J. Mater. Sci. 2019, 54, 2222. |
[38] | Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Chem. Soc. Rev. 2018, 47, 2680. |
[39] | Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797. |
[40] | Ma, F.; Sun, L.; Zhao, H.; Li, Q.; Huo, L.; Xia, T.; Gao, S. Chem. Res. Chinese U. 2013, 29, 735. |
[41] | Feng, J.; Ye, S.; Lu, X.; Tong, Y.; Li, G. ACS Appl. Mater. Inter. 2015, 7, 11444. |
[42] | Deng, Y.; Xie, Y.; Zou, K.; Ji, X. J. Mater. Chem. A 2016, 4, 1144. |
[43] | Li, M.; Zhang, Y.; Yang, L.; Liu, Y.; Yao, J. Electrochim. Acta 2015, 166, 310. |
[44] | Wei, T.; Wei, X.; Yang, L.; Xiao, H.; Gao, Y.; Li, H. J. Power Sources 2016, 331, 373. |
[45] | Wang, J.; Liu, H.; Sun, H.; Hua, W.; Wang, H.; Liu, X.; Wei, B. Carbon 2018, 127, 85. |
[46] | Chen, H.; Zhou, M.; Wang, Z.; Zhao, S.; Guan, S. Electrochim. Acta 2014, 148, 187. |
[47] | Liu, Y.; Cao, L.; Luo, J.; Peng, Y.; Ji, Q.; Dai, J.; Zhu, J.; Liu, X. ACS Sustain. Chem. Eng. 2019, 7, 2763. |
[48] | Miao, L.; Zhu, D.; Liu, M.; Duan, H.; Wang, Z.; Lv, Y.; Xiong, W.; Zhu, Q.; Li, L.; Chai, X.; Gan, L. Electrochim. Acta 2018, 274, 378. |
[49] | Díez, N.; Sevilla, M.; Fuertes, A. B. ChemElectroChem 2020, 7, 3798. |
[50] | Zhu, J.; Yang, J.; Miao, R.; Yao, Z.; Zhuang, X.; Feng, X. J. Mater. Chem. A 2016, 4, 2286. |
[51] | Wang, H.; Yi, H.; Zhu, C.; Wang, X.; Fan, H. Nano Energy 2015, 13, 658. |
[52] | Zhao, Y.; Lu, M.; Tao, P.; Zhang, Y.; Gong, X.; Yang, Z.; Zhang, G.; Li, H. J. Power Sources 2016, 307, 391. |
[53] | Zhao, J.; Gong, J.; Li, Y.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D.; Wang, G. Acta Chim. Sinica 2018, 76, 31. (in Chinese) |
[53] | (赵婧, 龚俊伟, 李一举, 程魁, 叶克, 朱凯, 闫俊, 曹殿学, 王贵领, 化学学报, 2018, 76, 31.) |
/
〈 |
|
〉 |