Recent Progress on Catalysts for Hydrogen Evolution from Decomposition of Hydrous Hydrazine
Received date: 2021-03-31
Online published: 2021-05-11
Supported by
National Natural Science Foundation of China(21763012); Post-graduate’s Innovation Fund Project of Jiangxi Normal University(YJS2020020)
Hydrogen with remarkable energy density has attracted much attention as the green, sustainable chemical energy carrier and a substitute for traditional fossil fuels. The discovery of safe and efficient hydrogen storage materials for the transition to a hydrogen energy society is one of the biggest challenges for hydrogen energy applications today. Hydrous hydrazine (N2H4•H2O), with its high hydrogen content (w=8.0%) and the advantage of CO-free hydrogen production, has significant advantages in hydrogen storage and release and is considered as a promising liquid-phase chemical hydrogen storage material. The development of efficient and highly selective catalysts is the key to release hydrogen from the decomposition of hydrous hydrazine. In the past decade, a lot of catalysts have been developed to improve the kinetic properties for hydrogen generation. In this review, we focus on the recent progress on catalyst design, synthesis and catalytic performance of the catalyst in hydrogen production from the selective decomposition of hydrous hydrazine. Ir, Rh and Ni monometallic catalysts were found to be very active toward the dehydrogenation of hydrazine. Among all the catalysts investigated, supported Pt-Ni, Rh-Ni and Pt-Co catalysts showed the highest activity. The mechanism of hydrazine decomposition was briefly analyzed. The cleavage of the N―H bond of N2H4 will facilitate the formation of H2 and N2, while N―N bond cleavage will result in the formation of NH3 and N2. In addition, we reviewed and discussed the strategies for promoting H2 selectivity and activity of catalysts, such as the addition of strong base and/or alkaline carrier, formation of metal alloys, reduction of metal crystallinity and particle size, as well as the enhancement of the interaction between metal and support. The progress of this research may provide guidance for obtaining more active catalysts toward hydrogen production from nitrogen-based hydrides.
Anqi Zhang , Qilu Yao , Zhang-Hui Lu . Recent Progress on Catalysts for Hydrogen Evolution from Decomposition of Hydrous Hydrazine[J]. Acta Chimica Sinica, 2021 , 79(7) : 885 -902 . DOI: 10.6023/A21030126
[1] | Gong, K.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Science 2009, 323, 760. |
[2] | Pan, Z. Y.; Tang, Z.; Zhan, Y. Z.; Sun, D. Tungsten 2020, 2, 390. |
[3] | He, B.; Ren, Y. X.; Dai, T. J. Rare Metals 2019, 40, 219. |
[4] | Zhang, T. L.; Lu, Z. G.; Zhang, L. Y. Chin. Chem. Lett. 2020, 31, 3135. |
[5] | Liang, Z. B.; Zhao, R.; Qiu, T. J.; Zou, R. Q.; Xu, Q. EnergyChem 2019, 1, 100001. |
[6] | Grochala, W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283. |
[7] | Schlapbach, L.; Züttel, A. Nature 2001, 414, 353. |
[8] | Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. Nature 2002, 420, 302. |
[9] | Li, X. R.; Yang, X. C.; Xue, H. G.; Pang, H.; Xu, Q. EnergyChem 2020, 2, 100027. |
[10] | Li, W. H.; Deng, W. H.; Wang, G-E.; Xu, G. EnergyChem 2020, 2, 100029. |
[11] | Zhang, X. T.; Chen, J. C.; Zhu, L.; Hao, S.; Jiang, D. M.; Xia, L. S. Appl. Chem. Ind. 2018, 47, 139. (in Chinese) |
[11] | (张晓腾, 陈俊畅, 朱林, 郝帅, 蒋冬梅, 夏良树, 应用化工, 2018, 47, 139.) |
[12] | Xue, S. F.; Li, Y. J.; Zheng, F. H.; Bian, X.; Wu, W. Y.; Yang, C. H. Rare Metals 2021, 40, 31. |
[13] | Cheng, Y.; Wu, X.; Xu, H. Sustain. Energy Fuels 2019, 3, 343. |
[14] | Zhan, J. J.; Chen, Z. H. Mater. Rep. 2007, 62, 66. (in Chinese) |
[14] | (湛建阶, 陈朝辉, 材料导报, 2007, 62, 66.) |
[15] | Cho, S. J.; Lee, J.; Lee, Y. S.; Kim, D. P. Catal. Lett. 2006, 109, 181. |
[16] | Jang, Y. B.; Kim, T. H.; Sun, M. H.; Lee, J.; Cho, S. J. Catal. Today 2009, 146, 196. |
[17] | Singh, S. K.; Zhang, X.-B.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 9894. |
[18] | He, L.; Huang, Y.; Wang, A.; Wang, X.; Chen, X.; Delgado, J. J.; Zhang, T. Angew. Chem. Int. Ed. 2012, 51, 6191. |
[19] | He, L.; Liang, B.; Li, L.; Yang, X.; Huang, Y.; Wang, A.; Wang, X.; Zhang, T. ACS Catal. 2015, 5, 1623. |
[20] | Kang, W.; Varma, A. Appl. Catal. B-Environ. 2018, 220, 409. |
[21] | Yao, Q. L.; Lu, Z. H.; Yang, K. K. Sci. Rep. 2015, 5, 15186. |
[22] | Yao, Q.; Shi, W.; Feng, G.; Lu, Z.-H.; Zhang, X.; Tao, D.; Kong, D.; Chen, X. J. Power Sources 2014, 257, 293. |
[23] | Huang, M.; Yao, Q.; Feng, G.; Zou, H.; Lu, Z. H. Inorg. Chem. 2020, 59, 5781. |
[24] | Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Nature Mater. 2007, 6, 507. |
[25] | Wang, H.; Wu, L.; Jia, A.; Li, X.; Shi, Z.; Duan, M.; Wang, Y. Chem. Eng. J. 2018, 332, 637. |
[26] | Zhang, S.; Yao, Q.; Li, Q.; Feng, G.; Lu, Z. H. Energy Technol. 2019, 7, 1800533. |
[27] | He, L.; Huang, Y.; Wang, A.; Wang, X.; Zhang, T. AICHE J. 2013, 59, 4297. |
[28] | Wang, H.; Wu, L.; Wang, Y.; Li, X.; Wang, Y. Catal. Commun. 2017, 100, 33. |
[29] | Kim, Y.; Kwon, K. Y. Bull. Korean Chem. Soc. 2019, 40, 1167. |
[30] | Wang, Z. L.; Yan, J. M.; Ping, Y.; Wang, H. L.; Zheng, W. T.; Jiang, Q. Angew. Chem. Int. Ed. 2013, 52, 4406. |
[31] | Lu, Z.-H.; Yao, Q.; Zhang, Z.; Yang, Y.; Chen, X. J. Nanomater. 2014, 2014, 1. |
[32] | Kang, Y.; Xue, Q.; Peng, R.; Jin, P.; Zeng, J.; Jiang, J.; Chen, Y. NPG Asia Mater. 2017, 9, 407. |
[33] | Liu, M.; Zheng, Y.; Xie, S.; Li, N.; Lu, N.; Wang, J.; Kim, M. J.; Guo, L.; Xia, Y. Phys. Chem. Chem. Phys. 2013, 15, 11822. |
[34] | Singh, S. K.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 18032. |
[35] | Singh, A. K.; Yadav, M.; Aranishi, K.; Xu, Q. Int. J. Hydrogen Energy 2012, 37, 18915. |
[36] | Zhong, D.-C.; Mao, Y.-L.; Tan, X.; Zhong, P.; Liu, L.-X. Int. J. Hydrogen Energy 2016, 41, 6362. |
[37] | Zhang, Z. J.; Wang, Y. Q.; Chen, X. S.; Lu, Z. H. J. Power Sources 2015, 291, 14. |
[38] | Wang, J.; Zhang, X.-B.; Wang, Z.-L.; Wang, L.-M.; Zhang, Y. Energy Environ. Sci. 2012, 5, 6885. |
[39] | Hou, T.; Luo, Q.; Li, Q. Nat. Commun. 2020, 11, 4251. |
[40] | Chen, S. Nanoscale 2018, 10, 20043. |
[41] | Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.-L.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Electrochem. Commun. 2012, 16, 61. |
[42] | Kang, K. M. ACS Appl. Mater. Inter. 2017, 9, 44687. |
[43] | Kim, S. J. ACS Nano 2018, 12, 986. |
[44] | Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. Adv. Funct. Mater 2018, 28, 1800136. |
[45] | Liu, T.; Wang, Q.; Yuan, J.; Zhao, X.; Gao, G. ChemCatChem 2018, 10, 2200. |
[46] | Yin, B.; Wang, Q. T.; Liu, T.; Gao, G. H. New J. Chem. 2018, 42, 20001. |
[47] | Zhang, Z.; Lu, Z.-H.; Tan, H.; Chen, X.; Yao, Q. J. Mater. Chem. A 2015, 3, 23520. |
[48] | Chen, J.; Yao, Q.; Zhu, J.; Chen, X.; Lu, Z.-H. Int. J. Hydrogen Energy 2016, 41, 3946. |
[49] | Singh, A. K.; Xu, Q. ChemCatChem 2013, 5, 652. |
[50] | Yao, Q.; Lu, Z. H.; Hu, Y. J.; Chen, X. S. RSC Adv. 2016, 6, 89450. |
[51] | Hu, Y.; Wang, Y.; Lu, ZH.; Chen, X.; Xiong, L. Appl. Surf. Sci. 2015, 341, 185. |
[52] | Yoo, J. B.; Kim, H. S.; Kang, S. H.; Lee, B.; Hur, N. H. J. Mater. Chem. A 2014, 2, 18929. |
[53] | Gu, X.; Lu, Z. H.; Xu, Q. Chem. Commun. 2010, 46, 7400. |
[54] | Li, X. G.; Zhang, C. L.; Luo, M. H.; Yao, Q. L.; Lu, Z. H. Inorg. Chem. Front. 2020, 7, 1298. |
[55] | Xia, B.; Cao, N.; Dai, H.; Su, J.; Wu, X.; Luo, W.; Cheng, G. ChemCatChem 2014, 6, 2549. |
[56] | Xia, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. Nano Res. 2015, 8, 3472. |
[57] | Zhao, P.; Cao, N.; Luo, W.; Cheng, G. J. Mater. Chem. A 2015, 3, 12468. |
[58] | Yang, K.; Yang, K. K.; Zhang, S. L.; Luo, Y.; Yao, Q. L.; Lu, Z. H. J. Alloys Compd. 2018, 732, 363. |
[59] | Zhang, Z.; Zhang, S.; Yao, Q.; Feng, G.; Zhu, M.; Lu, Z.-H. Inorg. Chem. Front. 2018, 5, 370. |
[60] | Singh, S. K.; Xu, Q. Inorg. Chem. 2010, 49, 6148. |
[61] | Singh, S. K.; Lu, Z.-H.; Xu, Q. Eur. J. Inorg. Chem. 2011, 2011, 2232. |
[62] | Singh, A. K.; Xu, Q. Int. J. Hydrogen Energy 2014, 39, 9128. |
[63] | Oliaee, S. N.; Zhang, C.; Hwang, S. Y.; Cheung, H. M.; Peng, Z. J. Phys. Chem. C 2016, 120, 9764. |
[64] | He, L.; Huang, Y.; Wang, A.; Liu, Y.; Liu, X.; Chen, X.; Delgado, J. J.; Wang, X.; Zhang, T. J. Catal. 2013, 298, 1. |
[65] | Jiang, Y.; Kang, Q.; Zhang, J.; Dai, H.-B.; Wang, P. J. Power Sources 2015, 273, 554. |
[66] | Jiang, Y. Y.; Dai, H. B.; Zhong, Y. J.; Chen, D. M.; Wang, P. Chem. Eur. J. 2015, 21, 15439. |
[67] | Wang, H. L.; Yan, J. M.; Wang, Z. L.; O, S. I.; Jiang, Q. J. Mater. Chem. A 2013, 1, 14957. |
[68] | Dai, H.; Qiu, Y.-P.; Dai, H.-B.; Wang, P. ACS Sustain. Chem. Eng. 2018, 6, 9876. |
[69] | Zhong, Y.-J.; Dai, H.-B.; Jiang, Y.-Y.; Chen, D.-M.; Zhu, M.; Sun, L.-X.; Wang, P. J. Power Sources 2015, 300, 294. |
[70] | Song, F. Z.; Zhu, Q. L.; Yang, X. C.; Zhan, W.; Pachfule, P.; Nobuko, Tsumori.; Xu, Q. Adv. Energy Mater. 2018, 8, 1701416. |
[71] | Qiao, M. F.; Wang, Y.; Li, L. Rare Metals 2020, 39, 824. |
[72] | Wang, D. C.; Lei, Y.; Jiao, W.; Liu, Y. F.; Mu, C. H.; Jian, X. Rare Metals 2021, 40, 3. |
[73] | Song, F. Z.; Yang, X.; Xu, Q. Small Methods 2020, 4, 1900707. |
[74] | Song, F. Z.; Zhu, Q. L.; Nobuko, T.; Xu, Q. ACS Catal. 2015, 5, 5141. |
[75] | Song, F. Z.; Zhu, Q.-L.; Xu, Q. J. Mater. Chem. A 2015, 3, 23090. |
[76] | Chen, J.; Lu, Z.-H.; Huang, W.; Kang, Z.; Chen, X. J. Alloy. Compd. 2017, 695, 3036. |
[77] | Du, Y.; Su, J.; Luo, W.; Cheng, G. ACS Appl. Mater. Inter. 2015, 7, 1031. |
[78] | Du, X.; Du, C.; Cai, P.; Luo, W.; Cheng, G. ChemCatChem 2016, 8, 1410. |
[79] | Singh, A.; Xu, Q. ChemCatChem 2013, 2013, 3000. |
[80] | Sun, J.-K.; Xu, Q. ChemCatChem 2015, 7, 526. |
[81] | Zhang, Z.; Zhang, S.; Yao, Q.; Chen, X.; Lu, Z. H. Inorg. Chem. 2017, 56, 11938. |
[82] | Zou, H. T.; Zhang, S. L.; Hong, X. L.; Yao, Q. L.; Luo, Y.; Lu, Z. H. J. Alloys Compd. 2020, 835, 155426. |
[83] | Cao, N.; Su, J.; Luo, W.; Cheng, G. Int. J. Hydrogen Energy 2014, 39, 9726. |
[84] | Cao, N.; Yang, L.; Dai, H.; Liu, T.; Su, J.; Wu, X.; Luo, W.; Cheng, G. Inorg. Chem. 2014, 53, 10122. |
[85] | Wen, L.; Du, X.; Su, J.; Luo, W.; Cai, P.; Cheng, G. Dalton Trans. 2015, 44, 6212. |
[86] | Luo, Y.; Yang, Q.; Nie, W.; Yao, Q.; Zhang, Z.; Lu, Z. H. ACS Appl. Mater. Inter. 2020, 12, 8082. |
[87] | Xia, B.; Liu, T.; Luo, W.; Cheng, G. J. Mater. Chem. A 2016, 4, 5616. |
[88] | O, S.-I.; Yan, J.-M.; Wang, H.-L.; Wang, Z.-L.; Jiang, Q. J. Power Sources 2014, 262, 386. |
[89] | Guo, F.; Zou, H.; Yao, Q.; Huang, B.; Lu, Z.-H. Renew. Energy 2020, 155, 1293. |
[90] | Singh, S. K.; Xu, Q. Chem. Commun. 2010, 46, 6545. |
[91] | Qiu, Y. P.; Yin, H.; Dai, H.; Gan, L. Y.; Dai, H. B.; Wang, P. Chem. Eur. J. 2018, 24, 4902. |
[92] | He, L.; Huang, Y.; Liu, X. Y.; Li, L.; Wang, A.; Wang, X.; Mou, C.-Y.; Zhang, T. Appl. Catal. B-Environ. 2014, 147, 779. |
[93] | Hong, X.; Yao, Q.; Huang, M.; Du, H.; Lu, Z.-H. Inorg. Chem. Front. 2019, 6, 2271. |
[94] | Zhao, P.; Cao, N.; Su, J.; Luo, W.; Cheng, G. ACS Sustain. Chem. Eng. 2015, 3, 1086. |
[95] | Singh, S. K.; Iizuka, Y.; Xu, Q. Int. J. Hydrogen Energy 2011, 36, 11794. |
[96] | Bhattacharjee, D.; Mandal, K.; Dasgupta, S. J. Power Sources 2015, 287, 96. |
[97] | Bhattacharjee, D.; Dasgupta, S. J. Mater. Chem. A 2015, 3, 24371. |
[98] | Song-Il, O.; Yan, J.-M.; Wang, H.-L.; Wang, Z.-L.; Jiang, Q. Int. J. Hydrogen Energy 2014, 39, 3755. |
[99] | Wang, K.; Yao, Q.; Qing, S.; Lu, Z.-H. J. Mater. Chem. A 2019, 7, 9903. |
[100] | Firdous, N.; Janjua, N. K.; Qazi, I.; Sarwar Wattoo, M. H.. Int. J. Hydrogen Energy 2016, 41, 984. |
[101] | Du, X.; Cai, P.; Luo, W.; Cheng, G. Int. J. Hydrogen Energy 2017, 42, 6137. |
[102] | luo, W.; Xiao, Q.-D.; Tan, S.; Cai, P.; Cheng, G. J. Mater. Chem. A 2016, 4, 14572. |
[103] | Liu, T.; Yu, J.; Bie, H.; Hao, Z. J. Alloy. Compd. 2017, 690, 783. |
[104] | Wang, J.; Li, W.; Wen, Y.; Gu, L.; Zhang, Y. Adv. Energy Mater. 2015, 5, 1401879. |
[105] | Yao, Q.; He, M.; Hong, X.; Chen, X.; Feng, G.; Lu, Z.-H. Int. J. Hydrogen Energy 2019, 44, 28430. |
[106] | Yao, Q.; He, M.; Hong, X.; Zhang, X.; Lu, Z.-H. Inorg. Chem. Front. 2019, 6, 1546. |
[107] | Yang, K. K.; Yao, Q. L.; Huang, W.; Chen, X. S.; Lu, Z. H. Int. J. Hydrogen Energy 2017, 42, 6840. |
[108] | Yao, Q.; Ding, Y.; Lu, Z. H. Inorg. Chem. Front. 2020, 7, 3837. |
[109] | Yao, Q.; Lu, Z.-H.; Zhang, R.; Zhang, S.; Chen, X.; Jiang, H.-L. J. Mater. Chem. A 2018, 6, 4386. |
[110] | Yao, Q.; Lu, Z. H.; Huang, W.; Chen, X.; Zhu, J. J. Mater. Chem. A 2016, 4, 8579. |
[111] | Singh, S. K.; Singh, A. K.; Aranishi, K.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 19638. |
[112] | Gao, W.; Li, C.; Chen, H.; Wu, M.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2014, 16, 1560. |
[113] | Wu, D.; Wen, M.; Gu, C.; Wu, Q. ACS Appl. Mater. Inter. 2017, 9, 16103. |
[114] | Men, Y.; Du, X.; Cheng, G.; Luo, W. Int. J. Hydrogen Energy 2017, 42, 27165. |
[115] | Zou, H.; Yao, Q.; Huang, M.; Zhu, M.; Zhang, F.; Lu, Z.-H. Sustain. Energy Fuels 2019, 3, 3071. |
[116] | Chen, J.; Zou, H.; Yao, Q.; Luo, M.; Li, X.; Lu, Z.-H. Appl. Surf. Sci. 2020, 501, 144247. |
[117] | Yao, Q.; Lu, Z. H.; Zhang, Z.; Chen, X.; Lan, Y. Sci. Rep. 2014, 4, 7597. |
[118] | Manukyan, K. V.; Cross, A.; Rouvimov, S.; Miller, J.; Mukasyan, A. S.; Wolf, E. E. Appl. Catal. A-Gen. 2014, 476, 47. |
[119] | Wang, J.; Li, Y.; Zhang, Y. Adv. Funct. Mater. 2014, 24, 7073. |
[120] | Wang, H.-L.; Yan, J.-M.; Li, S.-J.; Zhang, X.-W.; Jiang, Q. J. Mater. Chem. A 2015, 3, 121. |
[121] | Yen, H.; Seo, Y.; Kaliaguine, S.; Kleitz, F. ACS Catal. 2015, 5, 5505. |
[122] | Kang, W.; Guo, H.; Varma, A. Appl. Catal. B-Environ. 2019, 249, 54. |
[123] | Ding, L.; Shu, Y.; Wang, A.; Zheng, M.; Li, L.; Wang, X.; Zhang, T. Appl. Catal. A-Gen. 2010, 385, 232. |
[124] | Wu, D.; Wen, M.; Lin, X.; Wu, Q.; Gu, C.; Chen, H. J. Mater. Chem. A 2016, 4, 6595. |
[125] | Cheng, H.; Huang, Y.; Wang, A.; Wang, X.; Zhang, T. Top. Catal. 2009, 52, 1535. |
[126] | Zhang, J.; Kang, Q.; Yang, Z.; Dai, H.-B.; Zhuang, D.; Wang, P. J. Mater. Chem. A 2013, 1, 11623. |
[127] | Qiu, Y.-P.; Cao, G.-X.; Wen, H.; Shi, Q.; Dai, H.; Wang, P. Int. J. Hydrogen Energy 2019, 44, 15110. |
[128] | Liu, Y.; Zhang, H.; Ma, C.; Sun, N. Catalysts 2019, 9, 596. |
[129] | Zhao, B.; Song, J.; Ran, R.; Shao, Z. Int. J. Hydrogen Energy 2012, 37, 1133. |
[130] | Song, J.; Ran, R.; Shao, Z. Int. J. Hydrogen Energy 2010, 35, 7919. |
[131] | Oosawa, Y. J. Chem. Soc. Faraday Trans 1984, 80, 1507. |
[132] | Abe, T.; Taira, N.; Tanno, Y.; Kikuchi, Y.; Nagai, K. Chem. Commun. 2014, 50, 1950. |
[133] | Jana, M. K.; Gupta, U.; Rao, C. N. R. Dalton Trans. 2016, 45, 15137. |
[134] | Zhang, P.-X.; Wang, Y.-G.; Huang, Y.-Q.; Zhang, T.; Wu, G.-S.; Li, J. Catal. Today 2011, 165, 80. |
[135] | Block, J.; Schulz-Ekloff, G. J. Catal. 1973, 30, 327. |
[136] | He, L.; Huang, Y. Q.; Wang, A. Q.; Wang, X. D.; Zhang, T. Chem. Ind. Eng. Prog. 2014, 33, 2956. (in Chinese) |
[136] | (贺雷, 黄延强, 王爱琴, 王晓东, 张涛, 化工进展, 2014, 33, 2956.) |
[137] | Wood, B. J.; Wise, H. J. Catal. 1975, 39, 471. |
[138] | Falconer, J. L.; Wise, H. J. Catal. 1976, 43, 220. |
[139] | Prasad, J.; Gland, J. L. Langmuir 1991, 7, 722. |
[140] | Alberas, D. J.; Kiss, J.; Liu, Z. M.; White, J. M. Surf. Sci. 1992, 278, 51. |
[141] | Ranney, J. T.; Franz, A. J.; Gland, J. L. Langmuir 1997, 13, 2731. |
[142] | Zhang, D. X.; Yin, H.; Zhong, H. F.; Gan, L. Y.; Wang, P. Int. J. Hydrogen Energy 2020, 45, 16114. |
[143] | Dai, H. Ph.D. Dissertation, South China University of Technology, Guangzhou, 2019. (in Chinese) |
[143] | (戴豪, 博士论文, 华南理工大学, 广州, 2019.) |
[144] | Maurel, R.; Menezo, J. C. J. Catal. 1978, 51, 293. |
[145] | Lu, X. Y.; Francis, S.; Motta, D.; Dimitratos, N.; Roldan, A. Phys. Chem. Chem. Phys. 2020, 22, 3883. |
[146] | Deng, Z.; Lu, X.; Wen, Z.; Wei, S.; Liu, Y.; Fu, D.; Zhao, L.; Guo, W. Phys. Chem. Chem. Phys. 2013, 15, 16172. |
[147] | He, Y. B.; Jia, J. F.; Wu, H. S. Appl. Surf. Sci. 2015, 327, 462. |
[148] | McKay, H. L.; Jenkins, S. J.; Wales, D. J. J. Phys. Chem. C 2011, 115, 17812. |
[149] | Agusta, M. K.; David, M.; Nakanishi, H.; Kasai, H. Surf. Sci. 2010, 604, 245. |
[150] | Yin, H.; Qiu, Y. P.; Dai, H.; Gan, L. Y.; Dai, H. B.; Wang, P. J. Phys. Chem. C 2018, 122, 5443. |
[151] | Daff, T. D.; de Leeuw, N. H. J. Mater. Chem. 2012, 22, 23210. |
[152] | He, Y. B. Ph.D. Dissertation, Shanxi Normal University, Linfen, 2015. (in Chinese) |
[152] | (贺艳斌, 博士论文, 山西师范大学, 临汾, 2015.) |
[153] | Singh, S. K.; Xu, Q. Catal. Sci. Technol. 2013, 3, 1889. |
[154] | Zhang, Z. J.; Lu, Z. H.; Chen, X. S. ACS Sustain. Chem. Eng. 2015, 3, 1255. |
[155] | Chen, J. M.; Lu, Z. H.; Yao, Q. L. J. Mater. Chem. A 2018, 6, 20746. |
[156] | Yao, L. H.; Li, X. G.; Peng, W. F.; Yao, Q. L.; Xia, J. H.; Lu, Z. H. Inorg. Chem. Front. 2021, 8, 1056. |
[157] | Yao, Q. L.; Yang, K. K.; Nie, W. D.; Li, Y. X.; Lu, Z. H. Renewable Energy 2020, 147, 2024. |
[158] | He, L.; Liang, B.; Huang, Y.; Zhang, T. Natl. Sci. Rev. 2017, 5, 356. |
[159] | Li, L. C.; Lan, Y. J. Ind. Catal. 1994, 1, 3. (in Chinese) |
[159] | (李令成, 蓝蕴基, 工业催化, 1994, 1, 3.) |
[160] | Zou, H. T.; Guo, F.; Luo, M. H.; Yao, Q. L.; Lu, Z. H. Int. J. Hydrogen Energy 2020, 45, 11641. |
[161] | Li, S. J.; Wang, H. L.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Adv. Energy. Mater 2018, 8, 1800625. |
[162] | Zhang, S.; Yao, Q.; Lu, Z. Chem. Ind. Eng. Prog. 2017, 29, 426. (in Chinese) |
[162] | (张世亮, 姚淇露, 卢章辉, 化学进展, 2017, 29, 426.) |
[163] | Wang, W.; Hong, X.; Yao, Q.; Lu, Z.-H. J. Mater. Chem. A 2020, 8, 13694. |
[164] | Guo, J. Q.; Du, Y. P.; Zhang, H. B. Acta Chim. Sinica 2020, 78, 625. (in Chinese) |
[164] | (郭金秋, 杜亚平, 张洪波, 化学学报, 2020, 78, 625.) |
[165] | Nie, W. D.; Yang, Q. F.; Lu, Z. H. J. Jiangxi Normal Univ. (Natural Sci.), 2019, 43, 416. (in Chinese) |
[165] | (聂文丹, 杨齐凤, 卢章辉, 江西师范大学学报(自然科学版), 2019, 43, 416.) |
[166] | Huang, G. J.; Chen, Z. G.; Li, M. D.; Yang, B.; Xin, M. L.; Li, S. P.; Yin, Z. J. Acta Chim. Sinica 2016, 74, 789. (in Chinese) |
[166] | (黄国家, 陈志刚, 李茂东, 杨波, 辛明亮, 李仕平, 尹宗杰, 化学学报, 2016, 74, 789.) |
[167] | Sun, J.; Liang, B. L.; Huang, Y. Q.; Wang, X. D. Catal. Today 2016, 274, 123. |
[168] | Zhang, J. W.; Li, P.; Zhang, X. N.; Ma, X. J.; Wang, B. Acta Chim. Sinica 2020, 78, 597. (in Chinese) |
[168] | (张晋维, 李平, 张馨凝, 马小杰, 王博, 化学学报, 2020, 78, 597.) |
[169] | Fu, Q.; Yang, P.; Wang, J.; Wang, H.; Yang, L.; Zhao, X. J. Mater. Chem. A 2018, 6, 11370. |
[170] | Zhao, M.; Xu, L.; Vara, M.; Elnabawy, A. O.; Gilroy, K. D.; Hood, Z. D.; Zhou, S.; Figueroa-Cosme, L.; Chi, M.; Mavrikakis, M.; Xia, Y. ACS Catal. 2018, 8, 6948. |
[171] | Zhang, Z.; Luo, Y.; Liu, S.; Yao, Q.; Qing, S.; Lu, Z. H. J. Mater. Chem. A 2019, 7, 21438. |
[172] | Wang, W.; Lu, Z. H.; Luo, Y.; Zou, A.; Yao, Q. L.; Chen, X. S. ChemCatChem 2018, 10, 1620. |
[173] | Nie, W. D.; Luo, Y.; Yang, Q. F.; Feng, G.; Yao, Q. L.; Lu, Z. H. Inorg. Chem. Front. 2020, 7, 709. |
[174] | Yao, Q. L.; Lu, Z. H.; Wang, Y.; Chen, X.; Feng, G. J. Phys. Chem. C 2015, 119, 14167. |
[175] | Chen, J. M.; Lu, Z. H.; Wang, Y.; Chen, X.; Zhang, L. Int. J. Hydrogen Energy 2015, 40, 4777. |
[176] | Yang, Y. W.; Lu, Z. H.; Hu, Y. J.; Zhang, Z. J.; Shi, W. M.; Chen, X. RSC Adv. 2014, 4, 13749. |
[177] | Yao, Q. L.; Lu, Z. H.; Jia, Y. S.; Chen, X.; Liu, X. Int. J. Hydrogen Energy 2015, 40, 2207. |
[178] | Lu, Z. H.; Li, J. P.; Zhu, A. L.; Yao, Q. L.; Huang, W.; Zhou, R. Y.; Zhou, R. F.; Chen, X. Int. J. Hydrogen Energy 2013, 38, 5330. |
[179] | Lu, Z. H.; Li, J. P.; Feng, G.; Yao, Q. L.; Zhang, F.; Zhou, R. Y.; Tao, D. J.; Chen, X.; Yu, Z. Q. Int. J. Hydrogen Energy 2014, 39, 13389. |
[180] | Yao, Q. L.; Lu, Z. H.; Yang, Y. Nano Res. 2018, 11, 4412. |
[181] | Yao, Q.; Yang, K.; Hong, X.; Chen, X.; Lu, Z.-H. Catal. Sci. Technol. 2018, 8, 870. |
[182] | Dong, Y. L.; Zhao, J. Q. Petrochem. Technol. 2018, 47, 883. (in Chinese) |
[182] | (董永利, 赵继全, 石油化工, 2018, 47, 883.) |
/
〈 |
|
〉 |