Article

Hierarchical Porous N, P co-doped rGO Modified Separator to Enhance the Cycling Stability of Lithium-sulfur Batteries

  • Feng Chen ,
  • Xiaoqin Cheng ,
  • Zhenxin Zhao ,
  • Xiaomin Wang
Expand
  • a College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    b Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan University of Technology, Taiyuan 030024, China

Received date: 2021-03-27

  Online published: 2021-05-25

Supported by

National Natural Science Foundation of China(U1710256); National Natural Science Foundation of China(U1810115); National Natural Science Foundation of China(52072256); Key Research and Development (R&D) Projects of Shanxi Province(201803D121038); Shanxi Science and Technology Major Project(20181102018); Shanxi Science and Technology Major Project(2181102019); Shanxi Science and Technology Major Project(20191102004); Shanxi Science and Technology Major Project(20201101016)

Abstract

Lithium-sulfur batteries with high energy density (2600 Wh•kg-1) and theoretical capacity (1675 mAh•g-1) have attracted much attention. Furthermore, as a cathode active material, sulfur has prominent advantages such as rich in natural resources, low cost and environmental friendliness. Attributed to the above merits, lithium-sulfur batteries deemed to be one of the most promising energy storage devices. However, poor utilization of sulfur and the shuttle effect of lithium polysulfides (LiPSs) causes dramatic capacity degradation, which severely restricts the commercial application of lithium-sulfur batteries. These problems are mainly attributed to the insulating nature of sulfur and its final discharge products (Li2S2/Li2S), which reduces the sulfur utilization, as well as the poor adsorption capability and slow reaction kinetics, which give rise to the shuttle effect of soluble LiPSs. To solve the above problems, carbon materials are regarded as the most suitable cathode materials for lithium-sulfur batteries, because its superior electrical conductivity and rich porous structure can effectively improve the sulfur utilization and mitigate the shuttle effect of LiPSs. However, the shuttling of LiPSs is difficult to suppressed completely due to the weak adsorption interaction between nonpolar carbon materials and polar LiPSs. Based on this, heteroatom doping is beneficial to enrich the chemical adsorption sites of LiPSs in carbon materials, enhancing the interaction between carbon materials and LiPSs. Thus, the shuttle effect of LiPSs is efficiently suppressed and the cycle stability of lithium-sulfur batteries is improved. Hence, N, P co-doped reduced graphene oxide (NPG) with hierarchical porous structure was prepared by one-step high-temperature reduction method and used for the polypropylene (PP) separator modification of lithium-sulfur batteries. The highly conductive NPG with abundant hierarchical porous structure provides a large number of anchor sites for LiPSs and sufficient ion/electron transport channels, facilitating the conversion of the soluble intermediates and efficiently suppressing the shuttle effect of LiPSs. In consequence, the NPG/PP modified separator can effectively inhibit the shuttle of LiPSs and improve the sulfur utilization. The results show that the cells with NPG/PP modified separator exhibit excellent cycling performance (the degradation per cycle is only 0.052% and the capacity remains at 612.5 mAh•g-1 after 500 cycles at 1 C) and excellent rate performance (high specific capacity of 617.9 mAh•g-1 at 2 C). This idea of constructing hierarchical porous N, P co-doped rGO modified separators provides a new strategy for the study of lithium-sulfur battery.

Cite this article

Feng Chen , Xiaoqin Cheng , Zhenxin Zhao , Xiaomin Wang . Hierarchical Porous N, P co-doped rGO Modified Separator to Enhance the Cycling Stability of Lithium-sulfur Batteries[J]. Acta Chimica Sinica, 2021 , 79(7) : 941 -947 . DOI: 10.6023/A21030117

References

[1]
(a) Zhao, Z.; Pathak, R.; Wang, X.; Yang, Z.; Li, H.; Qiao, Q. Electrochim. Acta 2020, 364, 137117.
[1]
(b) Huang, S.; Lim, Y. V.; Zhang, X.; Wang, Y.; Zheng, Y.; Kong, D.; Ding, M.; Yang, S. A.; Yang, H. Y. Nano Energy 2018, 51, 340.
[2]
(a) Li, J.; Zhou, J.; Wang, T.; Chen, X.; Zhang, Y.; Wan, Q.; Zhu, J. Nanoscale 2020, 12, 8991.
[2]
(b) Song, C.-L.; Li, G.-H.; Yang, Y.; Hong, X.-J.; Huang, S.; Zheng, Q.-F.; Si, L.-P.; Zhang, M.; Cai, Y.-P. Chem. Eng. J. 2020, 381, 122701.
[3]
(a) Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. Nat. Nanotechnol. 2018, 13, 337.
[3]
(b) Guo, W.; Han, Q.; Jiao, J.; Wu, W.; Zhu, X.; Chen, Z.; Zhao, Y. Angew. Chem. Int. Ed. 2021, 60, 2.
[4]
Shin, H.; Baek, M.; Gupta, A.; Char, K.; Manthiram, A.; Choi, J. W. Adv. Energy Mater. 2020, 10, 2001456.
[5]
(a) Guang, Z.; Huang, Y.; Chen, C.; Liu, X.; Xu, Z.; Dou, W. Chem. Eng. J. 2020, 383, 123163.
[5]
(b) Lin, J.; Zhang, K.; Zhu, Z.; Zhang, R.; Li, N.; Zhao, C. ACS Appl. Mater. Interfaces 2020, 12, 2497.
[5]
(c) Pan, H.; Tan, Z.; Zhou, H.; Jiang, L.; Huang, Z.; Feng, Q.; Zhou, Q.; Ma, S.; Kuang, Y. J. Energ. Chem. 2019, 39, 101.
[5]
(d) Rana, M.; Li, M.; He, Q.; Luo, B.; Wang, L.; Gentle, I.; Knibbe, R. J. Energ. Chem. 2020, 44, 51.
[6]
Fu, A.; Wang, C.; Pei, F.; Cui, J.; Fang, X.; Zheng, N. Small 2019, 15, e1804786.
[7]
Chung, S. H.; Manthiram, A. J. Phys. Chem. Lett. 2014, 5, 1978.
[8]
(a) Qiu, Y.; Li, W.; Zhao, W.; Li, G.; Hou, Y.; Liu, M.; Zhou, L.; Ye, F.; Li, H.; Wei, Z.; Yang, S.; Duan, W.; Ye, Y.; Guo, J.; Zhang, Y. Nano Lett. 2014, 14, 4821.
[8]
(b) Wang, X.; Li, Y.; Du, L.; Gao, F.; Wu, Q.; Yang, L.; Chen, Q.; Wang, X.; Hu, Z. Acta Chim. Sinica 2018, 76, 627. (in Chinese)
[8]
(王啸, 李有彬, 杜玲玉, 高福杰, 吴强, 杨立军, 陈强, 王喜章, 胡征, 化学学报, 2018, 76, 627.)
[9]
(a) Paraknowitsch, J. P.; Thomas, A. Energy Environ. Sci. 2013, 6, 2839.
[9]
(b) Talapaneni, S. N.; Hwang, T. H.; Je, S. H.; Buyukcakir, O.; Choi, J. W.; Coskun, A. Angew. Chem. Int. Ed. 2016, 55, 3106.
[9]
(c) Chen, K.; Sun, Z.; Fang, R.; Li, F.; Cheng, H. Acta Phys.-Chim. Sin. 2018, 34, 377. (in Chinese)
[9]
(陈克, 孙振华, 方若翩, 李峰, 成会明, 物理化学学报, 2018, 34, 377.)
[9]
(d) Li, B.-Q.; Peng, H.-J.; Chen, X.; Zhang, S.-Y.; Xie, J.; Zhao, C.-X.; Zhang, Q. CCS Chem. 2019, 1, 128.
[10]
Li, W.; Ma, Q.; Zheng, Z.; Zhang, Y. Acta Chim. Sinica 2017, 75, 225.. (in Chinese)
[10]
(李宛飞, 马倩, 郑召召, 张跃钢, 化学学报, 2017, 75, 225.)
[11]
Zhang, K.; Zhang, F.; Pan, H.; Yu, J.; Wang, L.; Wang, D.; Wang, L.; Hu, G.; Zhang, J.; Qian, Y. Electrochim. Acta 2020, 354, 136648.
[12]
Shan, J.; Liu, Y.; Su, Y.; Liu, P.; Zhuang, X.; Wu, D.; Zhang, F.; Feng, X. J. Mater. Chem. A 2016, 4, 314.
[13]
Zhu, J.; Li, K.; Xiao, M.; Liu, C.; Wu, Z.; Ge, J.; Xing, W. J. Mater. Chem. A 2016, 4, 7422.
[14]
(a) Liu, Y.; Yuan, L.; Yang, M.; Zheng, Y.; Li, L.; Gao, L.; Nerngchamnong, N.; Nai, C. T.; Sangeeth, C. S.; Feng, Y. P.; Nijhuis, C. A.; Loh, K. P. Nat. Commun. 2014, 5, 5461.
[14]
(b) Chen, K.; Zhang, S.; Li, A.; Tang, X.; Li, L.; Guo, L. ACS Nano 2018, 12, 4269.
[15]
Yang, Z.; Gao, Y.; Zhao, Z.; Wang, Y.; Wu, Y.; Wang, X. J. Power Sources 2020, 474, 228500.
[16]
Li, J.; Yun, X.; Hu, Z.; Xi, L.; Li, N.; Tang, H.; Lu, P.; Zhu, Y. J. Mater. Chem. A 2019, 7, 26311.
[17]
(a) Zhang, J.; Qu, L.; Shi, G.; Liu, J.; Chen, J.; Dai, L. Angew. Chem. Int. Ed. 2016, 55, 2230.
[17]
(b) Wu, X.; Li, S.; Wang, B.; Liu, J.; Yu, M. Renewable Energy 2020, 158, 509.
[17]
(c) Chabu, J. M.; Zeng, K.; Jin, G.; Zhang, M.; Li, Y.; Liu, Y.-N. Mater. Chem. Phys. 2019, 229, 226.
[18]
(a) Song, Z.-C.; Lu, X.-L. Hu, Q.; Ren, J.; Zhang, W.-Q.; Zheng, Q.-J.; Lin, D.-M. J. Power Sources 2019, 421, 23.
[18]
(b) Xiang, M.; Yang, L.; Zheng, Y.; Huang, J.; Jing, P.; Wu, H.; Zhang, Y.; Liu, H. J. Mater. Chem. A 2017, 5, 18020.
[19]
Zegeye, T. A.; Tsai, M.-C.; Cheng, J.-H.; Lin, M.-H.; Chen, H.-M.; Rick, J.; Su, W.-N.; Kuo, C. -F. J.; Hwang, B.-J. J. Power Sources 2017, 353, 298.
[20]
Ren, J.; Xia, L.; Zhou, Y.; Zheng, Q.; Liao, J.; Lin, D. Carbon 2018, 140, 30.
[21]
Maiti, U. N.; Lee, W. J.; Lee, J. M.; Oh, Y.; Kim, J. Y.; Kim, J. E.; Shim, J.; Han, T. H.; Kim, S. O. Adv. Mater. 2014, 26, 40.
[22]
Cai, J.; Wu, C.; Zhu, Y.; Zhang, K.; Shen, P. K. J. Power Sources 2017, 341, 165.
[23]
Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Mater. 2017, 29, 1604015.
[24]
Li, M.; Zhou, X.; Ma, X.; Chen, L.; Zhang, D.; Xu, S.; Duan, D.; Chen, C.; Yuan, Q.; Liu, S. Chem. Eng. J. 2021, 409, 128164.
[25]
Gao, Y.; Yang, Z.; Wang, Y.; Wang, X. Electrochim. Acta 2021, 368, 137646.
[26]
Zhou, S.; Yang, S.; Ding, X.; Lai, Y.; Nie, H.; Zhang, Y.; Chan, D.; Duan, H.; Huang, S.; Yang, Z. ACS Nano 2020, 14, 7538.
Outlines

/