High-performance Pt0.01Fe0.05-g-C3N4 Catalyst for Photothermal Catalytic CO2 Reduction
Received date: 2021-03-29
Online published: 2021-05-31
Supported by
National Natural Science Foundation of China(21822607); State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201701)
Converting CO2 into value-added compounds via photothermal catalysis is a promising strategy to reduce CO2 emission and might be a sustainable alternative to traditional fossil fuels. Here, we report nano-structured a Pt0.01Fe0.05-g-C3N4 hybrid catalyst synthesized via hydrothermal-method and further reduced under reaction condition for the reverse water gas shift (RWGS) reaction. Taking advantage of the photo-thermal effect caused by the near-infrared (NIR) and visible light responsive, the hybrid catalyst produces a remarkable activity (7.36 mmol•h-1•gcat-1) for CO2 reduction with CO selectivity (97%) under 300 W Xe lamp irradiation and CO2/H2 (V/V, 1/1) feed gas. The apparent activation energy of reaction decreases from 238.59 kJ/mol to 48.88 kJ/mol calculated by Arrhenius formula. In order to comprehend the good catalytic activity of Pt0.01Fe0.05-g-C3N4in the RWGS reaction, the catalyst is characterized with powder X-ray diffraction (XRD), spherical-aberration-corrected scanning transmission electron microscopy (Cs-S/TEM) integrated with X-ray energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), UV-vis-NIR diffuse reflectance spectroscopy (DRS),etc. for investigating the structural information, surface state, optical properties and so on. Results show that the presence of FeO x and Pt exhibits strong absorption in a wide range from UV to NIR regions. Low photoluminescence (PL) intensity at about 460 nm shows the suppressed photogenerated carrier recombination process of Pt0.01Fe0.05-g-C3N4 due to the heterojunction between FeO x and g-C3N4. Operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) under different reaction conditions is employed to investigate surface species and their evolution during the conversion of CO2 into CO and a broad IR absorption is observed due to hydrogen spillover from Pt to Fe3O4. Therefore, we propose a possible mechanism of photothermal catalytic CO2 reduction, involving separate activation of CO2 and H2 over Fe and Pt acitve sites. Our work present a high-performance Pt0.01Fe0.05-g-C3N4 catalyst for RWGS reaction and open a new vista of the design, synthesis and mechanism research of photothermal catalytic CO2 conversion in the future.
Ruizhao Wang , Yunjie Zou , Sheng Hong , Mingkai Xu , Lan Ling . High-performance Pt0.01Fe0.05-g-C3N4 Catalyst for Photothermal Catalytic CO2 Reduction[J]. Acta Chimica Sinica, 2021 , 79(7) : 932 -940 . DOI: 10.6023/A21030118
[1] | Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C. Y.; Zhu, X.; Wang, J.; Huang, L.; Gao, Y.; Wang, Z.; Jo, C.; Wang, Q.; Wang, L.; Liu, Y.; Louis, B.; Scott, J.; Roger, A.-C.; Amal, R.; He, H.; Park, S.-E. Chem. Soc. Rev. 2020, 49, 8584. |
[2] | Ghoussoub, M.; Xia, M.; Duchesne, P. N.; Segal, D.; Ozin, G. Energy Environ. Sci. 2019, 12, 1122. |
[3] | Yin, S.; Sun, L.; Zhou, Y.; Li, X.; Li, J.; Song, X.; Huo, P.; Wang, H.; Yan, Y. Chem. Eng. J. 2021, 406, 126776. |
[4] | Zhang, X.; Deng, B.; Fan, H.; Huang, W.; Zhang, Y. Acta Chim. Sinica. 2020, 78, 1120. (in Chinese) |
[4] | (张旭寒, 邓博文, 范海东, 黄文辉, 张彦威, 化学学报, 2020, 78, 1120.) |
[5] | Hoch, L. B.; O’Brien, P. G.; Jelle, A.; Sandhel, A.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. ACS Nano 2016, 10, 9017. |
[6] | Wang, L.; Dong, Y.; Yan, T.; Hu, Z.; Jelle, A. A.; Meira, D. M.; Duchesne, P. N.; Loh, J. Y. Y.; Qiu, C.; Storey, E. E.; Xu, Y.; Sun, W.; Ghoussoub, M.; Kherani, N. P.; Helmy, A. S.; Ozin, G. A. Nat. Commun. 2020, 11, 2432. |
[7] | Hoch, L. B.; O’Brien, P. G.; Jelle, A.; Sandhel, A.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. ACS Nano 2016, 10, 9017. |
[8] | Li, Y. F.; Lu, W.; Chen, K.; Duchesne, P.; Jelle, A.; Xia, M.; Wood, T. E.; Ulmer, U.; Ozin, G. A. J. Am. Chem. Soc. 2019, 141, 14991. |
[9] | Jia, J.; Wang, H.; Lu, Z.; O’Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z.; Li, P.; Qiao, Q.; Wang, L.; Gu, A.; Jelle, A. A.; Dong, Y.; Wang, Q.; Ghuman, K. K.; Wood, T.; Qian, C.; Shao, Y.; Qiu, C.; Ye, M.; Zhu, Y.; Lu, Z. H.; Zhang, P.; Helmy, A. S.; Singh, C. V.; Kherani, N. P.; Perovic, D. D.; Ozin, G. A. Adv. Sci. 2017, 4, 1700252. |
[10] | Li, C.; Chen, F.; Ye, L.; Li, W.; Yu, H.; Zhao, T. Acta Chim. Sinica 2020, 78, 1448. (in Chinese) |
[10] | (李宸, 陈凤华, 叶丽, 李伟, 于晗, 赵彤, 化学学报, 2020, 78, 1448.) |
[11] | Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A. Nat. Mater. 2009, 8, 76. |
[12] | Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. |
[13] | Huang, Z. F.; Song, J.; Pan, L.; Wang, Z.; Zhang, X.; Zou, J. J.; Mi, W.; Zhang, X.; Wang, L. Nano Energy 2015, 12, 646. |
[14] | Chen, P.; Lei, B.; Dong, X.; Wang, H.; Sheng, J.; Cui, W.; Li, J.; Sun, Y.; Wang, Z.; Dong, F. ACS Nano 2020, 14, 15841. |
[15] | Chen, S.; Hu, Y.; Meng, S.; Fu, X. Appl. Catal., B 2014, 150-151, 564. |
[16] | Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Surf. Interface Anal. 2004, 36, 1564. |
[17] | Palmer, J. W.; Swartz Jr, W. E.; King, D.; Stanko, J. A. Fla. Sci. 1993, 56, 123. |
[18] | Romeo, M.; Majerus, J.; Legare, P.; Castellani, N. J.; Leroy, D. B. Surf. Sci. 1990, 238, 163. |
[19] | Liu, H. Y.; Chiou, W. A.; Fröhlich, G.; Sachtler, W. M. H. Top. Catal. 2000, 10, 49. |
[20] | Sun, M. H.; Huang, S. Z.; Chen, L. H.; Li, Y.; Yang, X. Y.; Yuan, Z. Y.; Su, B. L. Chem. Soc. Rev. 2016, 45, 3479. |
[21] | He, S.; Li, W.; Wang, X.; Ma, Q.; Li, M.; Xu, W.; Wang, X.; Zhao, C. Appl. Surf. Sci. 2020, 506, 144948. |
[22] | Kong, T.; Stolze, K.; Timmons, E. I.; Tao, J.; Ni, D.; Guo, S.; Yang, Z.; Prozorov, R.; Cava, R. J. Adv. Mater. 2019, 31, 1. |
[23] | Wang, L.; Ghoussoub, M.; Wang, H.; Shao, Y.; Sun, W.; Tountas, A. A.; Wood, T. E.; Li, H.; Loh, J. Y. Y.; Dong, Y.; Xia, M.; Li, Y.; Wang, S.; Jia, J.; Qiu, C.; Qian, C.; Kherani, N. P.; He, L.; Zhang, X.; Ozin, G. A. Joule 2018, 2, 1369. |
[24] | Zhu, Z.; Lu, Z.; Wang, D.; Tang, X.; Yan, Y.; Shi, W.; Wang, Y.; Gao, N.; Yao, X.; Dong, H. Appl. Catal., B 2016, 182, 115. |
[25] | Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000,543. |
[26] | Wu, H. Z.; Liu, L. M.; Zhao, S. J. Phys. Chem. Chem. Phys. 2014, 16, 3299. |
[27] | Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. Energy Environ. Sci. 2015, 8, 731. |
[28] | Arndt, B.; Creutzburg, M.; Grånäs, E.; Volkov, S.; Krausert, K.; Vlad, A.; Noei, H.; Stierle, A. J. Phys. Chem. C 2019, 123, 26662. |
[29] | Mirabella, F.; Zaki, E.; Ivars-Barcelo, F.; Schauermann, S.; Shaikhutdinov, S.; Freund, H. J. J. Phys. Chem. C 2018, 122, 27433. |
[30] | Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Fernández Sanz, J.; Rodriguez, J. A. Science 2014, 345, 546. |
[31] | Hakim, A.; Marliza, T. S.; Abu Tahari, N. M.; Wan Isahak, R. W. N.; Yusop, R. M.; Mohamed Hisham, W. M.; Yarmo, A. M. Ind. Eng. Chem. Res. 2016, 55, 7888. |
[32] | Gracia, F. J.; Bollmann, L.; Wolf, E. E.; Miller, J. T.; Kropf, A. J. J. Catal. 2003, 220, 382. |
[33] | Benziger, J. B.; Larson, L. R. J. Catal. 1982, 77, 550. |
[34] | Li, X.; Lin, J.; Li, L.; Huang, Y.; Pan, X.; Collins, S. E.; Ren, Y.; Su, Y.; Kang, L.; Liu, X.; Zhou, Y.; Wang, H.; Wang, A.; Qiao, B.; Wang, X.; Zhang, T. Angew. Chem. Int. Ed. 2020, 59, 2. |
[35] | Panayotov, D. A.; Yates, J. T. J. Phys. Chem. C 2007, 111, 2959. |
[36] | Skomurski, F. N.; Kerisit, S.; Rosso, K. M. Geochim. Cosmochim. Acta 2010, 74, 4234. |
[37] | Parkinson, G. S.; Mulakaluri, N.; Losovyj, Y.; Jacobson, P.; Pentcheva, R.; Diebold, U. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 125413. |
[38] | Novotny, Z.; Mulakaluri, N.; Edes, Z.; Schmid, M.; Pentcheva, R.; Diebold, U.; Parkinson, G. S. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 195410. |
[39] | Kurahashi, M.; Sun, X.; Yamauchi, Y. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 193402. |
[40] | Baltrusaitis, J.; Jensen, J. H.; Grassian, V. H. J. Phys. Chem. B 2006, 110, 12005. |
[41] | Gálvez, M. E.; Loutzenhiser, P. G.; Hischier, I.; Steinfeld, A. Energy Fuels 2008, 22, 3544. |
/
〈 |
|
〉 |