Article

Investigation on the Efficient Removal of U(VI) from Water by Sulfide Nanoscale Zero-valent Iron

  • Ziang Bai ,
  • Ruixing Chen ,
  • Hongwei Pang ,
  • Xiangxue Wang ,
  • Gang Song ,
  • Shujun Yu
Expand
  • a MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
    b Heibei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
    c Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
* E-mail: ; Tel.: 010-61772865

Received date: 2021-06-09

  Online published: 2021-07-20

Supported by

National Natural Science Foundation of China(21906052); National Natural Science Foundation of China(U2067215); Research Fund Program of Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources(2017B030314182)

Abstract

In recent years, uranium (U(VI)), a radioactive contaminant, has been widely used in industrial production and military fields. Although the industry has developed, its discharge in water poses a serious threat to the natural environment and biological health. In order to solve this problem, in this study, we prepared sulfide nano zero-valent iron (S-NZVI) material by liquid-phase reduction using NaBH4, FeSO4•7H2O and Na2S2O4 as main materials in N2-filled glove box, and applied them to U(VI) removal from water. First of all, serial microscopic characterization techniques were adopted to explore the surface morphology and physicochemical properties of S-NZVI. The results showed that the S-NZVI particles are less agglomerated and more stable compared to nano zero-valent iron (NZVI). Subsequently, we investigated the effects of reaction time, temperature, pH, and background ion concentration on the removal of U(VI) by S-NZVI through macroscopic batch experiments. The consequence indicated that the maximum removal of U(VI) by S-NZVI at room temperature (20 ℃) could reach 562.5 mg•g-1, and the reaction equilibrium could be received within 100 min. And more importantly, the eliminated process of S-NZVI is consistent with Langmuir single-molecule layer adsorption model, and the conditions for optimal performance were at ambient temperature (20 ℃) and pH=7~8. Combined with the results of macroscopic experiments and X-ray photoelectron spectroscopy (XPS) analysis, the removal mechanism of U(VI) by S-NZVI may be attributed to the synergistic effect of adsorption and redox reaction. In addition, S-NZVI can be separated from water rapidly by external magnetic field due to its magnetic property, which is convenient for material recycle and reutilization. In conclusion, this study has prepared a facile, recyclable, and efficient material for U(VI) decontamination, which may play a significant role in the future of environmental protection, nuclear waste remediation, and other related fields.

Cite this article

Ziang Bai , Ruixing Chen , Hongwei Pang , Xiangxue Wang , Gang Song , Shujun Yu . Investigation on the Efficient Removal of U(VI) from Water by Sulfide Nanoscale Zero-valent Iron[J]. Acta Chimica Sinica, 2021 , 79(10) : 1265 -1272 . DOI: 10.6023/A21060263

References

[1]
Shi, W. Q.; Yuan, L. Y.; Li, Z. J.; Lan, J. H.; Zhao, Y. L.; Chai, Z. F. Radiochim. Acta 2012, 100, 727.
[2]
Pritee, P.; Madhurima, P.; Piyush, K. P. J. J. Nucl. Mater. 2021, 328, 89.
[3]
Shao, Y.; Yang, G. S.; Zhang, J. L.; Luo, M.; Ma, L. L.; Xu, D. D. Acta Chim. Sinica 2021, 79, 716. (in Chinese)
[3]
邵阳, 杨国胜, 张继龙, 罗敏, 马玲玲, 徐殿斗, 化学学报, 2021, 79, 716.)
[4]
Li, Z. N.; Sha, H. Y.; Yang, N.; Yuan, Y.; Zhu, G. S. Acta Chim. Sinica 2019, 77, 469. (in Chinese)
[4]
(李樟楠, 沙浩岩, 杨南, 元野, 朱广山, 化学学报, 2019, 77, 469.)
[5]
Pang, H. W.; Tang, H.; Wang, J. Q.; Wang, X. X.; Yu, S. J. Inorg. Mater. 2020, 35, 381.
[6]
Wang, N.; Pang, H. W.; Yu, S. J.; Gu, P. C.; Song, S.; Wang, H. Q.; Wang, X. K. Acta Chim. Sinica 2019, 77, 143. (in Chinese)
[6]
(王宁, 庞宏伟, 于淑君, 顾鹏程, 宋爽, 王宏青, 王祥科, 化学学报, 2019, 77, 143.)
[7]
Wang, X. D.; Liu, S. J.; Xu, M. Environ. Chem. 2020, 40, 1. (in Chinese)
[7]
(王煦栋, 刘思金, 徐明, 环境化学, 2020, 40, 1.)
[8]
Liu, X. L.; Pang, H. W.; Liu, X. W.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M. Q.; Hu, B. W.; Yang, H.; Wang, X. K. The Innovation 2021, 2, 100076.
[9]
Chen, H. J.; Huang, S. Y.; Zhang, Z. B.; Liu, Y. H.; Wang, X. K. Acta Chim. Sinica 2017, 75, 560. (in Chinese)
[9]
(陈海军, 黄舒怡, 张志宾, 刘云海, 王祥科, 化学学报, 2017, 75, 560.)
[10]
Tang, J.; Feng, H. P.; Dong, H. R.; Zhang, Y.; Liu, S. S.; Zeng, G. M. Acta Chim. Sinica 2017, 75, 575. (in Chinese)
[10]
(汤晶, 冯浩朋, 董浩然, 章毅, 刘诗思, 曾光明, 化学学报, 2017, 75, 575.)
[11]
Li, Z. X.; Han, Y. T.; Xu, Y. Q.; Yang, Y.; Chen, J. W. Rock. Min. Anal. 2016, 35, 634. (in Chinese)
[11]
(李志雄, 韩奕彤, 徐永强, 杨洋, 陈家玮, 岩矿测试, 2016, 35, 634.)
[12]
Yu, S. J.; Wang, X. X.; Liu, Y. F.; Chen, Z. S.; Wu, Y. H.; Liu, Y.; Pang, H. W.; Song, G.; Chen, J. R.; Wang, X. K. Chem. Eng. J. 2019. 365, 51.
[13]
Huang, K. Y.; Shen, Y. J.; Wang, X. Y.; Wang, X. R.; Yuan, W. Y.; Zhang, C. L.; Bai, J. F.; Wang, J. W. Environ. Eng. 2020, 38, 203. (in Chinese)
[13]
(黄开友, 申英杰, 王晓岩, 王兴润, 苑文仪, 张承龙, 白建峰, 王景伟, 环境工程, 2020, 38, 203.)
[14]
Pang, H. W.; Wu, Y. H.; Huang, S. Y.; Ding, C. C.; Li, S.; Wang, X. X.; Yu, S. J.; Chen, Z. S.; Song, G.; Wang, X. K. Inorg. Chem. Front. 2018, 5, 2657.
[15]
Na, L. Y.; Zhang, L. Y.; Zhang, F. J.; Hua, R. N. Mater. Rep. 2020, 34, 22030. (in Chinese)
[15]
(那立艳, 张丽影, 张凤杰, 华瑞年, 材料导报, 2020, 34, 22030.)
[16]
Zhao, Z. G.; Tang, X. Y. J. Henan Polytechnic University Nat. Sci. 2002, 21, 1. (in Chinese)
[16]
(赵志根, 唐修义, 焦作工学院学报(自然科学版), 2002, 21, 1.)
[17]
Liu, Y.; Huo, Y. Z.; Wang, X. X.; Yu, S. J.; Ai, Y. J.; Chen, Z. S.; Zhang, P.; Chen, L.; Song, G.; Alharbi, N. S.; Rabah, S. O.; Wang, X. K. J. Clean. Prod. 2021, 278, 123216.
[18]
Zhang, C. L.; Liu, Y.; Li, X.; Chen, H. X.; Wen, T.; Jiang, Z. H; Ai, Y. J.; Yu, S. J.; Sun, Y. B.; Tasawar, H.; Wang, X. K. Chem. Eng. J. 2018, 346, 406.
[19]
Wu, S. Y.; Li, S. Y.; Hu, J. Y.; He, J. Q.; Wang, G. H.; Rong, L. S.; Jin, Y. Y. Acta Materiae Compositae Sinica 2020, 37, 11. (in Chinese)
[19]
(伍随意, 李仕友, 胡俊毅, 贺俊钦, 王国华, 荣丽杉, 金远远, 复合材料学报, 2020, 37, 11.)
[20]
Liu, X.; Li, X. Y.; Chen, Y. J.; Sang, W. X.; Chen, R. Chin. J. Nonferrous Met. 2020, 30, 1967. (in Chinese)
[20]
(刘学, 李小燕, 陈玉洁, 桑伟璇, 陈蓉, 中国有色金属学报, 2020, 30, 1967.)
[21]
Li, S. Y.; Shi, D. F.; Tang, Z. P.; Xie, S. B.; Liu, Y. J.; Ling, H. Acta Scientiae Circumstantiae 2017, 37, 1388. (in Chinese)
[21]
(李仕友, 史冬峰, 唐振平, 谢水波, 刘迎九, 凌辉, 环境科学学报, 2017, 37, 1388.)
[22]
Deng, W. J.; Zhou, S. K.; Liu, Y. J.; Zeng, G. M.; Jiang, H. H.; Kang, L.; Fang, L. Chin. J. Nonferrous Met. 2015, 25, 2604. (in Chinese)
[22]
(邓文静, 周书葵, 刘迎九, 曾光明, 江海浩, 康丽, 方良, 中国有色金属学报, 2015, 25, 2604.)
[23]
Guo, Y. D.; Liang, P.; Li, X. M.; Liu, M. Q. China Ceramics 2014, 50, 24. (in Chinese)
[23]
(郭亚丹, 梁平, 李效萌, 刘明清, 中国陶瓷, 2014, 50, 24.)
[24]
Ai, L.; Luo, X. G.; Lin, X. Y.; Mei, Q. Chem. Ind. Forest Prod. 2014, 34, 9. (in Chinese)
[24]
(艾莲, 罗学刚, 林晓艳, 梅强, 林产化学与工业, 2014, 34, 9.)
[25]
Mo, G. H.; Nong, H. D.; Hu, Q.; Xie, S. B.; Liu, H. J.; Zeng, T. T. Fine Chemicals 2021, 38, 395. (in Chinese)
[25]
(莫官海, 农海杜, 胡青, 谢水波, 刘红娟, 曾涛涛, 精细化工, 2021, 38, 395.)
[26]
I-Carmen, P.; Petru, F.; Doina, H.; Ionel, H.; Thomas, B. C.; Richard, A. C.. J. Nucl. Mater. 2013, 443, 250.
[27]
Xiong, X. H.; Chen, Q. S.; Zhou, J. W.; Liu, X. Y.; Wang, L. Y.; Huang, B.; Zhu, Y. A.; Luo, T. A. Non-metallic Minerals 2018, 41, 83. (in Chinese)
[27]
(熊小红, 陈泉水, 周佳玮, 刘星雨, 王玲钰, 黄彬, 朱业安, 罗太安, 非金属矿, 2018, 41, 83.)
[28]
Wang, J. Q.; Pang, H. W.; Tang, H.; Yu, S. J.; Zhu, H. T.; Wang, X. X. J. Inorg. Mater. 2020, 35, 373. (in Chinese)
[28]
(王佳琦, 庞宏伟, 唐昊, 于淑君, 朱洪涛, 王祥学, 无机材料学报, 2020, 35, 373.)
[29]
Sun, Q. N.; Zhang, R. B.; Deng, M. J.; Li, Y.; Wang, X. J. Environ. Sci. 2021, 42, 867. (in Chinese)
[29]
(孙秋楠, 张荣斌, 邓曼君, 李远, 王学江, 环境科学, 2021, 42, 867.)
[30]
Liu, Q. W.; Ding, Y. D.; Liao, Q.; Wang, H.; Zhu, X.; Zeng, F. Q. Chin. Sci. Bull. 2019, 64, 2441. (in Chinese)
[30]
(刘骐玮, 丁玉栋, 廖强, 王宏, 朱恂, 曾烽棋, 科学通报, 2019, 64, 2441.)
[31]
Liu, Y.; Pang, H. W.; Wang, X. X.; Yu, S. J.; Chen, Z. S.; Zhang, P.; Chen, L.; Song, G.; Alharbi, N. S.; Rabah, S. O.; Wang, X. K. Chem. Eng. J. 2021, 406, 127139.
[32]
Guo, W. J.; Liang, X. F.; Lin, D. S.; Xu, Y. M.; Wang, L.; Sun, Y. B.; Qin, X. Environ. Sci. 2013, 34, 3716. (in Chinese)
[32]
(郭文娟, 梁学峰, 林大松, 徐应明, 王林, 孙约兵, 秦旭, 环境科学, 2013, 34, 3716.)
[33]
Ayben, K. Appl. Radiat. Isot. 2003, 58, 713.
[34]
Tan, P. L. J. Catal. 2016, 338, 21.
[35]
Toru, Y.; Peter, H. Appl. Surf. Sci. 2008, 254, 2441.
[36]
Chen, R.; Sang, W. X.; Li, X. Y.; He, D. W.; Wang, Y.; Cao, X. G. Industrial Water Treatment 2021, 41, 66. (in Chinese)
[36]
(陈蓉, 桑伟璇, 李小燕, 何登武, 王杨, 曹小岗, 工业水处理, 2021, 41, 66.)
[37]
Fan, J.; Hu, Y. B.; Li, X. Y. ACS Sustain. Chem. Eng. 2018, 6, 15135.
[38]
Sourjay, B.; Subhasis, G. Environ. Sci. Technol. 2018, 52, 11078.
[39]
Sheng, G. D.; Ahmed, A.; Wafa, S.; Shatha, M.; Sheng, J.; Wang, X. K.; Li, H.; Huang, Y. Y. Carbon 2016, 99, 123.
[40]
Huang, H.; Wei, Y. W.; Wang, W. Y.; Liu, M. M.; Niu, Z. R. Acta Scientiae Circumstantiae 2020, 40, 128. (in Chinese)
[40]
(黄华, 魏雨薇, 王婉悦, 刘淼淼, 牛志睿, 环境科学学报, 2020, 40, 128.)
[41]
Li, X. Y.; Zhang, M.; Liu, Y. B.; Li, X.; Yang, B.; Hua, R.; Liu, Y. H. Chin. J. Nonferrous Met. 2015, 25, 3505. (in Chinese)
[41]
(李小燕, 张明, 刘义保, 李寻, 杨波, 花榕, 刘云海, 中国有色金属学报, 2015, 25, 3505.)
[42]
Yan, S.; Hua, B.; Bao, Z. Y.; Yang, J.; Liu, C. X.; Deng, B. L. Environ. Sci. Technol. Lett. 2010, 44, 7783.
[43]
Gao, S. M.; Wang, X. D.; Qin, L.; Luo, S.; Zhao, X.; Liu, S. S.; Wang, L. S. J. Nanjing Univ. (Nat. Sci.) 2007, 358. (in Chinese)
[43]
(高树梅, 王晓栋, 秦良, 罗斯, 赵欣, 刘树深, 王连生, 南京大学学报(自然科学版), 2007, 358.)
[44]
Pang, H. W.; Diao, Z. F.; Wang, X. X.; Ma, Y.; Yu, S. J.; Zhu, H. T.; Chen, Z. S.; Hu, B. W.; Chen, J. R.; Wang, X. K. Chem. Eng. J. 2019, 366, 368.
[45]
Liang, W. Y. M.S. Thesis, Hunan University, Changsha, 2019. (in Chinese)
[45]
(梁玮瑜, 硕士论文, 湖南大学,长沙, 2019.)
Outlines

/