Research Progresses of Sodium Cobalt Oxide as Cathode in Sodium Ion Batteries
Received date: 2021-06-09
Online published: 2021-07-20
Supported by
National Key Research and Development Program of China(2016YFB0901502); funding project of the Top-notch Students Scientific Development Pilot Program (Chemistry) of Xiamen University
Sodium ion batteries have regained widespread attention in the field of large-scale electrochemical energy storage by virtue of their widely distributed and low-cost sodium resources. Among many of the cathode materials (layered, tunnel-like, polyanionic type and Prussian-blue type, etc.), layered transition metal oxide materials have received extensive research attention due to the features of high specific capacity, relatively good electrochemical reversibility, and rich and adjustable chemical composition. Sodium cobalt oxide is one of the most typical layered transition metal oxides. A lot of research has been done about sodium cobalt oxide since the 1980s. Although compared with other energy storage systems (such as lithium cobalt oxide materials which has the similar composition), sodium cobalt oxide does not take more advantage in electrochemical performance (like rate performance, cycle performance, etc.), but it can be observed from the charge and discharge curve that sodium cobalt oxide has undergone complex electrochemical processes, which means that it has a bunch of information on the degradation mechanisms during the charge and discharge processes. The correlation studies of the failure mechanism during the charging and discharging processes of sodium cobalt oxide (including the structure changes and the charge compensation mechanisms) are of great significance for the deep understanding of the layered oxide systems in sodium ion batteries. Therefore, on the basis of introducing the common crystal structure types and the synthesis phase diagram of sodium cobalt oxides, this article focuses on reviewing the structure changes (including phase transition and Na+/ vacancy ordering) and charge compensation mechanisms of sodium cobalt oxides with different crystal structures during the charging and discharging. At the same time, the correlation between the mechanisms above and electrochemical performance is discussed. This review aims to provide support for the in-depth study and establishment of the structure-activity relationship in the electrochemical processes of layered transition metal oxide cathode materials.
Jisheng Xie , Zhumei Xiao , Wenhua Zuo , Yong Yang . Research Progresses of Sodium Cobalt Oxide as Cathode in Sodium Ion Batteries[J]. Acta Chimica Sinica, 2021 , 79(10) : 1232 -1243 . DOI: 10.6023/A21060260
[1] | Fang, Z.; Cao, Y.-L.; Hu, Y.-S.; Chen, L.-Q.; Huang, X.-J. Energy Storage Sci. Technol. 2016, 5, 149. (in Chinese) |
[1] | (方铮, 曹余良, 胡勇胜, 陈立泉, 黄学杰, 储能科学与技术, 2016, 5, 149.) |
[2] | Christoph, V.; Daniel, B.; Marcel, W.; Stefano, P. Nat. Rev. Mater. 2018, 3, 1. |
[3] | Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sinica 2014, 72, 21. (in Chinese) |
[3] | (李慧, 吴川, 吴锋, 白莹, 化学学报, 2014, 72, 21.) |
[4] | Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Solid State Ionics 1981, 3-4, 171. |
[5] | Kikkawa, S.; Miyazaki, S.; Koizumi, M. J. Solid State Chem. 1986, 62, 35. |
[6] | Li, W.; Liu, X.; Celio, H.; Smith, P.; Dolocan, A.; Chi, M.; Manthiram, A. Adv. Energy Mater. 2018, 8, 1703154. |
[7] | Noh, H.-J; Youn, S; Yoon, C. S; Sun, Y.-K. J. Power Sources 2013, 233, 121. |
[8] | Rossouw, M. H.; Thackeray, M. M. Mater. Res. Bull. 1991, 26, 463. |
[9] | Balsys, R. J.; Lindsay Davis, R. Solid State Ionics 1997, 93, 279. |
[10] | Delmas, C.; Braconnier, J.; Fouassier, C.; Hagenmuller, P. Solid State Ionics 1981, 3-4, 165. |
[11] | Molenda, J.; Delmas, C.; Hagenmuller, P. Solid State Ionics 1983, 9-10, 431. |
[12] | Shacklette, L. W.; Jow, T. R.; Townsend, L. J. Electrochem. Soc. 1988, 135, 2669. |
[13] | Shacklette, L. W.; Jow, T. R.; Maxfield, M.; Hatami, R. Synthetic Met. 1989, 28, 655. |
[14] | Fouassier, C.; Matejka, G.; Reau, J.-M.; Hagenmuller, P. J. Solid State Chem. 1973, 6, 532. |
[15] | Liu, L.-L.; Qi, X.-G.; Hu, Y.-S.; Chen, L.-Q.; Huang, X.-J. Acta Chim. Sinica 2017, 75, 218. (in Chinese) |
[15] | (刘丽露, 戚兴国, 胡勇胜, 陈立泉, 黄学杰, 化学学报, 2017, 75, 218.) |
[16] | Gutierrez, A.; Dose, W. M.; Borkiewicz, O.; Guo, F.; Avdeev, M.; Kim, S.; Fister, T. T.; Ren, Y.; Bareño, J.; Johnson, C. S. J. Phys. Chem. C 2018, 122, 23251. |
[17] | Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, A1225. |
[18] | Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Shuji Hitomi; Ryoichi Okuyama; Ryo Usui; Yasuhiro Yamada; Shinichi Komaba. Nat. Mater. 2012, 11, 512. |
[19] | Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. Energy Environ. Sci. 2014, 8, 195. |
[20] | Kumakura, S.; Tahara, Y.; Sato, S.; Kubota, K.; Komaba, S. Chem. Mater. 2017, 29, 8958. |
[21] | Didier, C.; Guignard, M.; Denage, C.; Szajwaj, O.; Ito, S.; Saadoune, I.; Darriet, J.; Delmas, C. Electrochem. Solid-State Lett. 2011, 14, A75. |
[22] | Yu, C.-Y.; Park, J.-S.; Jung, H.-G.; Chung, K.-Y.; Aurbach, D.; Sun, Y.-K.; Myung, S.-T. Energy Environ. Sci. 2015, 8, 2019. |
[23] | Caballero, A.; Hernán, L.; Morales, J.; Sánchez, L.; Santos Peña, J.; Aranda, M. A. G. J. Mater. Chem. 2002, 12, 1142. |
[24] | Mendiboure, A.; Delmas, C.; Hagenmuller, P. J. Solid State Chem. France 1985, 57, 323. |
[25] | Kikkawa, S.; Miyazaki, S.; Koizumi, M. Mater. Res. Bull. 1985, 20, 373. |
[26] | Wang, L.; Wang, J.; Zhang, X.; Ren, Y.; Zuo, P.; Yin, G.; Wang, J. Nano Energy 2017, 34, 215. |
[27] | Liu, X.; Zuo, W.; Zheng, B.; Xiang, Y.; Zhou, K.; Xiao, Z.; Shan, P.; Shi, J.; Li, Q.; Zhong, G.; Fu, R.; Yang, Y. Angew. Chem. Int. Ed. 2019, 58, 18086. |
[28] | Zuo, W.; Qiu, J.; Liu, X.; Ren, F.; Liu, H.; He, H.; Luo, C.; Li, J.; Ortiz, G. F.; Duan, H.; Liu, J.; Wang, M.-S.; Li, Y.; Fu, R.; Yang, Y. Nat. Commun. 2020, 11, 3544. |
[29] | Zuo, W.; Qiu, J.; Liu, X.; Zheng, B.; Zhao, Y.; Li, J.; He, H.; Zhou, K.; Xiao, Z.; Li, Q.; Ortiz, G. F.; Yang, Y. Energy Storage Mater. 2020, 26, 503. |
[30] | Zuo, W.; Ren, F.; Li, Q.; Wu, X.; Fang, F.; Yu, X.; Li, H.; Yang, Y. Nano Energy 2020, 78, 105285. |
[31] | Fang, Y.-J.; Chen, C.-X.; Ai, X.-P.; Yang, H.-X.; Cao, Y.-L. Acta Phys.-Chim. Sin. 2016, 33, 211. (in Chinese) |
[31] | (方永进, 陈重学, 艾新平, 杨汉西, 曹余良, 物理化学学报, 2016, 33, 211.) |
[32] | Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783. |
[33] | Hertz, J. T.; Huang, Q.; McQueen, T.; Klimczuk, T.; Bos, J. W. G.; Viciu, L.; Cava, R. J. Phys. Rev. B 2008, 77, 75119. |
[34] | Wang, Z.; Wang, Z.; Peng, W.; Guo, H.; Li, X.; Wang, J.; Qi, A. Ionics 2014, 20, 1525. |
[35] | Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.; Dilanian, R. S. T. Nature 2003, 34, 53. |
[36] | Berthelot, R.; Carlier, D.; Delmas, C. Nat. Mater. 2011, 10, 74. |
[37] | Lei, Y.; Li, X.; Liu, L.; Ceder, G. Chem. Mater. 2014, 26, 5288. |
[38] | Terasaki, I.; Sasago, Y.; Uchinokura, K. Phys. Rev. B 1997, 56, 75397. |
[39] | Ding, J. J.; Zhou, Y. N.; Sun, Q.; Yu, X. Q.; Yang, X. Q.; Fu, Z. W. Electrochim. Acta 2013, 87, 388. |
[40] | Guhl, C.; Rohrer, J.; Kehne, P.; Ferber, T.; Alff, L.; Albe, K.; Jaegermann, W.; Komissinskiy, P.; Hausbrand, R. Energy Storage Mater. 2021, 37, 190. |
[41] | Delmas, C.; Fouassier, C.; Hagenmuller, P. Physica B+C 1980, 99, 81. |
[42] | Blangero, M.; Carlier, D.; Pollet, M.; Darriet, J.; Delmas, C.; Doumerc, J.-P. Phys. Rev. B 2008, 77, 184116. |
[43] | Han, S. C.; Lim, H.; Jeong, J.; Ahn, D.; Park, W. B.; Sohn, K.-S.; Pyo, M. J. Power Sources 2015, 277, 9. |
[44] | Assadi, M. H. N.; Katayama-Yoshida, H. Comp. Mater. Sci. 2015, 109, 308. |
[45] | Bianchini, M.; Wang, J.; Clément, R.; Ceder, G. Adv. Energy Mater. 2018, 8, 1801446. |
[46] | Hasegawa, H.; Ishado, Y.; Okada, S.; Mizuhata, M.; Maki, H.; Matsui, M. J. Electrochem. Soc. 2021, 168, 10509. |
[47] | Yoshida, H.; Yabuuchi, N.; Komaba, S. Electrochem. Commun. 2013, 34, 60. |
[48] | Kang, S. M.; Park, J.-H.; Jin, A.; Jung, Y. H.; Mun, J.; Sung, Y.-E. ACS Appl. Mater. Interfaces 2018, 10, 3562. |
[49] | Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636. |
[50] | Carlier, D.; van der Ven, A.; Delmas, C.; Ceder, G. Chem. Mater. 2003, 15, 2651. |
[51] | Liu, Y.-C.; Chen, C.-J.; Zhang, N.; Xiang, X.-D.; Chen, J. J. Electrochem. 2016, 22, 437. (in Chinese) |
[51] | (刘永畅, 陈程成, 张宁, 王刘彬, 向兴德, 陈军, 电化学, 2016, 22, 437.) |
[52] | Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 102. |
[53] | Biecher, Y.; Smiley, D. L.; Guignard, M.; Fauth, F.; Berthelot, R.; Delmas, C.; Goward, G. R.; Carlier, D. Inorg. Chem. 2020, 59, 5339. |
[54] | Liu, H.-Q.; Gao, X.; Chen, J.; Yin, S.-Y.; Zou, K.-Y.; Xu, L.-Q.; Zou, G.-Q.; Hou, H.-S.; Ji, X.-B. Energy Storage Sci. Technol. 2020, 9, 1327. (in Chinese) |
[54] | (刘欢庆, 高旭, 陈军, 尹首懿, 邹康宇, 徐来强, 邹国强, 侯红帅, 纪效波, 储能科学与技术, 2020, 9, 1327.) |
[55] | Zhu, X.-J.; Zhuang, Y.-H.; Zhao, Y.; Ni, M.-Z.; Xu, J.; Xia, H. Energy Storage Sci. Technol. 2020, 9, 1340. (in Chinese) |
[55] | (朱晓辉, 庄宇航, 赵旸, 倪明珠, 徐璟, 夏晖, 储能科学与技术, 2020, 9, 1340.) |
[56] | Kubota, K.; Kumakura, S.; Yoda, Y.; Kuroki, K.; Komaba, S. Adv. Energy Mater. 2018, 8, 1703415. |
[57] | Yan, P.-F.; Zheng, J.-M.; Gu, M.; Xiao, J.; Zhang, J.-G.; Wang, C.-M. Nat. Commun. 2017, 8, 1. |
[58] | Carlier, D.; Blangero, M.; Ménétrier, M.; Pollet, M.; Doumerc, J.-P.; Delmas, C. Inorg. Chem. 2009, 48, 7018. |
[59] | Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kim, J. Ceram. Int. 2014, 40, 2411. |
[60] | Shu, G. J.; Chou, F. C. Phys. Rev. B 2008, 78. |
[61] | Shibata, T.; Kobayashi, W.; Moritomo, Y. Appl. Phys. Express 2015, 8, 29202. |
[62] | Willis, T. J.; Porter, D. G.; Voneshen, D. J.; Uthayakumar, S.; Demmel, F.; Gutmann, M. J.; Roger, M.; Refson, K.; Goff, J. P. Sci. Rep. 2018, 8, 3210. |
[63] | Hilgenkamp, H.; Ariando |
[64] | Foo, M. L.; Wang, Y.; Watauchi, S.; Zandbergen, H. W.; He, T.; Cava, R. J.; Ong, N. P. Phys. Rev. Lett. 2004, 92, 247001. |
[65] | Mukhamedshin, I. R.; Alloul, H.; Collin, G.; Blanchard, N. Phys. Rev. Lett. 2004, 93, 167601. |
[66] | Mukhamedshin, I. R.; Dooglav, A. V.; Krivenko, S. A.; Alloul, H. Phys. Rev. B 2014, 90, 115151. |
[67] | Platova, T. A.; Mukhamedshin, I. R.; Alloul, H.; Dooglav, A. V.; Collin, G. Phys. Rev. B 2009, 80, 224106. |
[68] | Platova, T. A.; Mukhamedshin, I. R.; Dooglav, A. V.; Alloul, H. JETP Lett. 2010, 91, 421. |
[69] | Mukhamedshin, I. R.; Alloul, H. Physica B: Condensed Matter 2015, 460, 58. |
[70] | Zandbergen, H. W.; Foo, M.; Xu, Q.; Kumar, V.; Cava, R. J. Phys. Rev. B 2004, 70, 24101. |
[71] | Chou, F. C.; Chu, M.-W.; Shu, G. J.; Huang, F.-T.; Pai, W. W.; Sheu, H. S.; Lee, P. A. Phys. Rev. Lett. 2008, 101, 127404. |
[72] | Roger, M.; Morris, D. J. P.; Tennant, D. A.; Gutmann, M. J.; Goff, J. P.; Hoffmann, J.-U.; Feyerherm, R.; Dudzik, E.; Prabhakaran, D.; Boothroyd, A. T.; Shannon, N.; Lake, B.; Deen, P. P. Nature 2007, 445, 631. |
[73] | Qu, J. F.; Wang, W.; Chen, Y.; Li, G.; Li, X. G. Phys. Rev. B 2006, 73, 250. |
[74] | Chen, J. Acta Phys.-Chim. Sin. 2018, 35, 347. (in Chinese) |
[74] | (陈军, 物理化学学报, 2018, 35, 347.) |
[75] | de Groot, F. M. F.; Grioni, M.; Fuggle, J. C.; Ghijsen, J.; Sawatzky, G. A.; Petersen, H. Phys. Rev. B 1989, 40, 5715. |
[76] | Valkeapaa, M.; Katsumata, Y.; Asako, I.; Motohashi, T.; Chan, T. S.; Liu, R. S.; Chen, J. M.; Yamauchi, H.; Karppinen, M. J. Solid State Chem. 2007, 180, 1608. |
[77] | Wang, P.-F.; Yao, H.-R.; Liu, X.-Y.; Yin, Y.-X.; Zhang, J.-N.; Wen, Y.; Yu, X.; Gu, L.; Guo, Y.-G. Sci. Adv. 2018, 4, eaar6018. |
/
〈 |
|
〉 |