Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (10): 1232-1243.DOI: 10.6023/A21060260 Previous Articles Next Articles
Review
投稿日期:
2021-06-09
发布日期:
2021-07-20
通讯作者:
杨勇
作者简介:
谢佶晟, 2021年于厦门大学化学系获学士学位, 研究方向为钠离子电池层状过渡金属氧化物正极材料的失效及改性机理研究. |
肖竹梅, 2018年于南开大学化学系获学士学位, 现为厦门大学化学化工学院杨勇教授课题组硕士研究生. 研究方向为锂、钠离子电池中高比能正极材料的反应机理研究. |
左文华, 2020年于厦门大学获得博士学位, 师从杨勇教授, 目前主要从事钠离子电池层状过渡金属氧化物正极材料研究. |
杨勇, 厦门大学闽江计划特聘教授, 博士生导师, 国家杰出青年科学基金获得者. 1992年获厦门大学理学博士学位, 1997~1998年任英国牛津大学访问科学家. 主要研究方向为能源电化学、材料物理化学及表面物理化学. |
基金资助:
Jisheng Xiea, Zhumei Xiaoa, Wenhua Zuoa, Yong Yanga,b()
Received:
2021-06-09
Published:
2021-07-20
Contact:
Yong Yang
Supported by:
Share
Jisheng Xie, Zhumei Xiao, Wenhua Zuo, Yong Yang. Research Progresses of Sodium Cobalt Oxide as Cathode in Sodium Ion Batteries[J]. Acta Chimica Sinica, 2021, 79(10): 1232-1243.
名称a | 优点 | 缺点 |
---|---|---|
NaMnO2 | Mn自然丰度高, 理论容量高(243 mAh/g) | 存在Jahn-Teller畸变, 充放电阶段多阶梯状曲线, 结构稳定性差, 循环性能差 |
NaFeO2 | Fe自然丰度极高, 低电压下充放电平台稳定, 电化学可逆性好 | 质量比容量低, 高电位下存在不可逆相变, 循环稳定性差 |
NaCoO2 | 低电压下电化学可逆性较好, 离子电导率高 | Co自然丰度极低, 成本高, 容量低, 充放电曲线多平台, 倍率性能差, 高电位下循环性能差 |
名称a | 优点 | 缺点 |
---|---|---|
NaMnO2 | Mn自然丰度高, 理论容量高(243 mAh/g) | 存在Jahn-Teller畸变, 充放电阶段多阶梯状曲线, 结构稳定性差, 循环性能差 |
NaFeO2 | Fe自然丰度极高, 低电压下充放电平台稳定, 电化学可逆性好 | 质量比容量低, 高电位下存在不可逆相变, 循环稳定性差 |
NaCoO2 | 低电压下电化学可逆性较好, 离子电导率高 | Co自然丰度极低, 成本高, 容量低, 充放电曲线多平台, 倍率性能差, 高电位下循环性能差 |
[1] |
Fang, Z.; Cao, Y.-L.; Hu, Y.-S.; Chen, L.-Q.; Huang, X.-J. Energy Storage Sci. Technol. 2016, 5, 149. (in Chinese)
|
(方铮, 曹余良, 胡勇胜, 陈立泉, 黄学杰, 储能科学与技术, 2016, 5, 149.)
|
|
[2] |
Christoph, V.; Daniel, B.; Marcel, W.; Stefano, P. Nat. Rev. Mater. 2018, 3, 1.
doi: 10.1038/s41578-018-0013-z |
[3] |
Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sinica 2014, 72, 21. (in Chinese)
doi: 10.6023/A13080830 |
(李慧, 吴川, 吴锋, 白莹, 化学学报, 2014, 72, 21.)
doi: 10.6023/A13080830 |
|
[4] |
Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Solid State Ionics 1981, 3-4, 171.
doi: 10.1016/0167-2738(81)90077-1 |
[5] |
Kikkawa, S.; Miyazaki, S.; Koizumi, M. J. Solid State Chem. 1986, 62, 35.
doi: 10.1016/0022-4596(86)90213-6 |
[6] |
Li, W.; Liu, X.; Celio, H.; Smith, P.; Dolocan, A.; Chi, M.; Manthiram, A. Adv. Energy Mater. 2018, 8, 1703154.
doi: 10.1002/aenm.v8.15 |
[7] |
Noh, H.-J; Youn, S; Yoon, C. S; Sun, Y.-K. J. Power Sources 2013, 233, 121.
doi: 10.1016/j.jpowsour.2013.01.063 |
[8] |
Rossouw, M. H.; Thackeray, M. M. Mater. Res. Bull. 1991, 26, 463.
doi: 10.1016/0025-5408(91)90186-P |
[9] |
Balsys, R. J.; Lindsay Davis, R. Solid State Ionics 1997, 93, 279.
doi: 10.1016/S0167-2738(96)00557-7 |
[10] |
Delmas, C.; Braconnier, J.; Fouassier, C.; Hagenmuller, P. Solid State Ionics 1981, 3-4, 165.
doi: 10.1016/0167-2738(81)90076-X |
[11] |
Molenda, J.; Delmas, C.; Hagenmuller, P. Solid State Ionics 1983, 9-10, 431.
doi: 10.1016/0167-2738(83)90271-0 |
[12] |
Shacklette, L. W.; Jow, T. R.; Townsend, L. J. Electrochem. Soc. 1988, 135, 2669.
doi: 10.1149/1.2095407 |
[13] |
Shacklette, L. W.; Jow, T. R.; Maxfield, M.; Hatami, R. Synthetic Met. 1989, 28, 655.
doi: 10.1016/0379-6779(89)90586-9 |
[14] |
Fouassier, C.; Matejka, G.; Reau, J.-M.; Hagenmuller, P. J. Solid State Chem. 1973, 6, 532.
doi: 10.1016/S0022-4596(73)80011-8 |
[15] |
Liu, L.-L.; Qi, X.-G.; Hu, Y.-S.; Chen, L.-Q.; Huang, X.-J. Acta Chim. Sinica 2017, 75, 218. (in Chinese)
doi: 10.6023/A16080424 |
(刘丽露, 戚兴国, 胡勇胜, 陈立泉, 黄学杰, 化学学报, 2017, 75, 218.)
doi: 10.6023/A16080424 |
|
[16] |
Gutierrez, A.; Dose, W. M.; Borkiewicz, O.; Guo, F.; Avdeev, M.; Kim, S.; Fister, T. T.; Ren, Y.; Bareño, J.; Johnson, C. S. J. Phys. Chem. C 2018, 122, 23251.
doi: 10.1021/acs.jpcc.8b05537 |
[17] |
Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, A1225.
doi: 10.1149/1.1407247 |
[18] |
Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Shuji Hitomi; Ryoichi Okuyama; Ryo Usui; Yasuhiro Yamada; Shinichi Komaba. Nat. Mater. 2012, 11, 512.
doi: 10.1038/nmat3309 pmid: 22543301 |
[19] |
Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. Energy Environ. Sci. 2014, 8, 195.
doi: 10.1039/C4EE03045A |
[20] |
Kumakura, S.; Tahara, Y.; Sato, S.; Kubota, K.; Komaba, S. Chem. Mater. 2017, 29, 8958.
doi: 10.1021/acs.chemmater.7b02772 |
[21] |
Didier, C.; Guignard, M.; Denage, C.; Szajwaj, O.; Ito, S.; Saadoune, I.; Darriet, J.; Delmas, C. Electrochem. Solid-State Lett. 2011, 14, A75.
doi: 10.1149/1.3555102 |
[22] |
Yu, C.-Y.; Park, J.-S.; Jung, H.-G.; Chung, K.-Y.; Aurbach, D.; Sun, Y.-K.; Myung, S.-T. Energy Environ. Sci. 2015, 8, 2019.
doi: 10.1039/C5EE00695C |
[23] |
Caballero, A.; Hernán, L.; Morales, J.; Sánchez, L.; Santos Peña, J.; Aranda, M. A. G. J. Mater. Chem. 2002, 12, 1142.
|
[24] |
Mendiboure, A.; Delmas, C.; Hagenmuller, P. J. Solid State Chem. France 1985, 57, 323.
doi: 10.1016/0022-4596(85)90194-X |
[25] |
Kikkawa, S.; Miyazaki, S.; Koizumi, M. Mater. Res. Bull. 1985, 20, 373.
doi: 10.1016/0025-5408(85)90003-0 |
[26] |
Wang, L.; Wang, J.; Zhang, X.; Ren, Y.; Zuo, P.; Yin, G.; Wang, J. Nano Energy 2017, 34, 215.
doi: 10.1016/j.nanoen.2017.02.046 |
[27] |
Liu, X.; Zuo, W.; Zheng, B.; Xiang, Y.; Zhou, K.; Xiao, Z.; Shan, P.; Shi, J.; Li, Q.; Zhong, G.; Fu, R.; Yang, Y. Angew. Chem. Int. Ed. 2019, 58, 18086.
doi: 10.1002/anie.v58.50 |
[28] |
Zuo, W.; Qiu, J.; Liu, X.; Ren, F.; Liu, H.; He, H.; Luo, C.; Li, J.; Ortiz, G. F.; Duan, H.; Liu, J.; Wang, M.-S.; Li, Y.; Fu, R.; Yang, Y. Nat. Commun. 2020, 11, 3544.
doi: 10.1038/s41467-020-17290-6 |
[29] |
Zuo, W.; Qiu, J.; Liu, X.; Zheng, B.; Zhao, Y.; Li, J.; He, H.; Zhou, K.; Xiao, Z.; Li, Q.; Ortiz, G. F.; Yang, Y. Energy Storage Mater. 2020, 26, 503.
|
[30] |
Zuo, W.; Ren, F.; Li, Q.; Wu, X.; Fang, F.; Yu, X.; Li, H.; Yang, Y. Nano Energy 2020, 78, 105285.
doi: 10.1016/j.nanoen.2020.105285 |
[31] |
Fang, Y.-J.; Chen, C.-X.; Ai, X.-P.; Yang, H.-X.; Cao, Y.-L. Acta Phys.-Chim. Sin. 2016, 33, 211. (in Chinese)
doi: 10.3866/PKU.WHXB201610111 |
(方永进, 陈重学, 艾新平, 杨汉西, 曹余良, 物理化学学报, 2016, 33, 211.)
|
|
[32] |
Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783.
doi: 10.1016/0025-5408(80)90012-4 |
[33] |
Hertz, J. T.; Huang, Q.; McQueen, T.; Klimczuk, T.; Bos, J. W. G.; Viciu, L.; Cava, R. J. Phys. Rev. B 2008, 77, 75119.
doi: 10.1103/PhysRevB.77.075119 |
[34] |
Wang, Z.; Wang, Z.; Peng, W.; Guo, H.; Li, X.; Wang, J.; Qi, A. Ionics 2014, 20, 1525.
doi: 10.1007/s11581-014-1098-z |
[35] |
Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.; Dilanian, R. S. T. Nature 2003, 34, 53.
|
[36] |
Berthelot, R.; Carlier, D.; Delmas, C. Nat. Mater. 2011, 10, 74.
doi: 10.1038/nmat2920 pmid: 21151162 |
[37] |
Lei, Y.; Li, X.; Liu, L.; Ceder, G. Chem. Mater. 2014, 26, 5288.
doi: 10.1021/cm5021788 |
[38] |
Terasaki, I.; Sasago, Y.; Uchinokura, K. Phys. Rev. B 1997, 56, 75397.
|
[39] |
Ding, J. J.; Zhou, Y. N.; Sun, Q.; Yu, X. Q.; Yang, X. Q.; Fu, Z. W. Electrochim. Acta 2013, 87, 388.
doi: 10.1016/j.electacta.2012.09.058 |
[40] |
Guhl, C.; Rohrer, J.; Kehne, P.; Ferber, T.; Alff, L.; Albe, K.; Jaegermann, W.; Komissinskiy, P.; Hausbrand, R. Energy Storage Mater. 2021, 37, 190.
|
[41] |
Delmas, C.; Fouassier, C.; Hagenmuller, P. Physica B+C 1980, 99, 81.
doi: 10.1016/0378-4363(80)90214-4 |
[42] |
Blangero, M.; Carlier, D.; Pollet, M.; Darriet, J.; Delmas, C.; Doumerc, J.-P. Phys. Rev. B 2008, 77, 184116.
doi: 10.1103/PhysRevB.77.184116 |
[43] |
Han, S. C.; Lim, H.; Jeong, J.; Ahn, D.; Park, W. B.; Sohn, K.-S.; Pyo, M. J. Power Sources 2015, 277, 9.
doi: 10.1016/j.jpowsour.2014.11.150 |
[44] |
Assadi, M. H. N.; Katayama-Yoshida, H. Comp. Mater. Sci. 2015, 109, 308.
doi: 10.1016/j.commatsci.2015.07.043 |
[45] |
Bianchini, M.; Wang, J.; Clément, R.; Ceder, G. Adv. Energy Mater. 2018, 8, 1801446.
doi: 10.1002/aenm.v8.26 |
[46] |
Hasegawa, H.; Ishado, Y.; Okada, S.; Mizuhata, M.; Maki, H.; Matsui, M. J. Electrochem. Soc. 2021, 168, 10509.
doi: 10.1149/1945-7111/abd451 |
[47] |
Yoshida, H.; Yabuuchi, N.; Komaba, S. Electrochem. Commun. 2013, 34, 60.
doi: 10.1016/j.elecom.2013.05.012 |
[48] |
Kang, S. M.; Park, J.-H.; Jin, A.; Jung, Y. H.; Mun, J.; Sung, Y.-E. ACS Appl. Mater. Interfaces 2018, 10, 3562.
doi: 10.1021/acsami.7b16077 |
[49] |
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636.
doi: 10.1021/cr500192f pmid: 25390643 |
[50] |
Carlier, D.; van der Ven, A.; Delmas, C.; Ceder, G. Chem. Mater. 2003, 15, 2651.
doi: 10.1021/cm030002t |
[51] |
Liu, Y.-C.; Chen, C.-J.; Zhang, N.; Xiang, X.-D.; Chen, J. J. Electrochem. 2016, 22, 437. (in Chinese)
|
(刘永畅, 陈程成, 张宁, 王刘彬, 向兴德, 陈军, 电化学, 2016, 22, 437.)
|
|
[52] |
Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 102.
|
[53] |
Biecher, Y.; Smiley, D. L.; Guignard, M.; Fauth, F.; Berthelot, R.; Delmas, C.; Goward, G. R.; Carlier, D. Inorg. Chem. 2020, 59, 5339.
doi: 10.1021/acs.inorgchem.9b03417 pmid: 32250599 |
[54] |
Liu, H.-Q.; Gao, X.; Chen, J.; Yin, S.-Y.; Zou, K.-Y.; Xu, L.-Q.; Zou, G.-Q.; Hou, H.-S.; Ji, X.-B. Energy Storage Sci. Technol. 2020, 9, 1327. (in Chinese)
|
(刘欢庆, 高旭, 陈军, 尹首懿, 邹康宇, 徐来强, 邹国强, 侯红帅, 纪效波, 储能科学与技术, 2020, 9, 1327.)
|
|
[55] |
Zhu, X.-J.; Zhuang, Y.-H.; Zhao, Y.; Ni, M.-Z.; Xu, J.; Xia, H. Energy Storage Sci. Technol. 2020, 9, 1340. (in Chinese)
|
(朱晓辉, 庄宇航, 赵旸, 倪明珠, 徐璟, 夏晖, 储能科学与技术, 2020, 9, 1340.)
|
|
[56] |
Kubota, K.; Kumakura, S.; Yoda, Y.; Kuroki, K.; Komaba, S. Adv. Energy Mater. 2018, 8, 1703415.
doi: 10.1002/aenm.v8.17 |
[57] |
Yan, P.-F.; Zheng, J.-M.; Gu, M.; Xiao, J.; Zhang, J.-G.; Wang, C.-M. Nat. Commun. 2017, 8, 1.
doi: 10.1038/s41467-016-0009-6 |
[58] |
Carlier, D.; Blangero, M.; Ménétrier, M.; Pollet, M.; Doumerc, J.-P.; Delmas, C. Inorg. Chem. 2009, 48, 7018.
doi: 10.1021/ic900026c pmid: 19419150 |
[59] |
Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kim, J. Ceram. Int. 2014, 40, 2411.
doi: 10.1016/j.ceramint.2013.08.013 |
[60] |
Shu, G. J.; Chou, F. C. Phys. Rev. B 2008, 78.
|
[61] |
Shibata, T.; Kobayashi, W.; Moritomo, Y. Appl. Phys. Express 2015, 8, 29202.
doi: 10.7567/APEX.8.029202 |
[62] |
Willis, T. J.; Porter, D. G.; Voneshen, D. J.; Uthayakumar, S.; Demmel, F.; Gutmann, M. J.; Roger, M.; Refson, K.; Goff, J. P. Sci. Rep. 2018, 8, 3210.
doi: 10.1038/s41598-018-21354-5 pmid: 29453391 |
[63] |
Hilgenkamp, H.; Ariando
doi: 10.1038/nature01442 |
[64] |
Foo, M. L.; Wang, Y.; Watauchi, S.; Zandbergen, H. W.; He, T.; Cava, R. J.; Ong, N. P. Phys. Rev. Lett. 2004, 92, 247001.
doi: 10.1103/PhysRevLett.92.247001 |
[65] |
Mukhamedshin, I. R.; Alloul, H.; Collin, G.; Blanchard, N. Phys. Rev. Lett. 2004, 93, 167601.
pmid: 15525032 |
[66] |
Mukhamedshin, I. R.; Dooglav, A. V.; Krivenko, S. A.; Alloul, H. Phys. Rev. B 2014, 90, 115151.
doi: 10.1103/PhysRevB.90.115151 |
[67] |
Platova, T. A.; Mukhamedshin, I. R.; Alloul, H.; Dooglav, A. V.; Collin, G. Phys. Rev. B 2009, 80, 224106.
doi: 10.1103/PhysRevB.80.224106 |
[68] |
Platova, T. A.; Mukhamedshin, I. R.; Dooglav, A. V.; Alloul, H. JETP Lett. 2010, 91, 421.
doi: 10.1134/S0021364010080126 |
[69] |
Mukhamedshin, I. R.; Alloul, H. Physica B: Condensed Matter 2015, 460, 58.
doi: 10.1016/j.physb.2014.11.040 |
[70] |
Zandbergen, H. W.; Foo, M.; Xu, Q.; Kumar, V.; Cava, R. J. Phys. Rev. B 2004, 70, 24101.
doi: 10.1103/PhysRevB.70.024101 |
[71] |
Chou, F. C.; Chu, M.-W.; Shu, G. J.; Huang, F.-T.; Pai, W. W.; Sheu, H. S.; Lee, P. A. Phys. Rev. Lett. 2008, 101, 127404.
pmid: 18851411 |
[72] |
Roger, M.; Morris, D. J. P.; Tennant, D. A.; Gutmann, M. J.; Goff, J. P.; Hoffmann, J.-U.; Feyerherm, R.; Dudzik, E.; Prabhakaran, D.; Boothroyd, A. T.; Shannon, N.; Lake, B.; Deen, P. P. Nature 2007, 445, 631.
doi: 10.1038/nature05531 |
[73] |
Qu, J. F.; Wang, W.; Chen, Y.; Li, G.; Li, X. G. Phys. Rev. B 2006, 73, 250.
|
[74] |
Chen, J. Acta Phys.-Chim. Sin. 2018, 35, 347. (in Chinese)
doi: 10.3866/PKU.WHXB201804021 |
(陈军, 物理化学学报, 2018, 35, 347.)
|
|
[75] |
de Groot, F. M. F.; Grioni, M.; Fuggle, J. C.; Ghijsen, J.; Sawatzky, G. A.; Petersen, H. Phys. Rev. B 1989, 40, 5715.
pmid: 9992609 |
[76] |
Valkeapaa, M.; Katsumata, Y.; Asako, I.; Motohashi, T.; Chan, T. S.; Liu, R. S.; Chen, J. M.; Yamauchi, H.; Karppinen, M. J. Solid State Chem. 2007, 180, 1608.
doi: 10.1016/j.jssc.2007.03.001 |
[77] |
Wang, P.-F.; Yao, H.-R.; Liu, X.-Y.; Yin, Y.-X.; Zhang, J.-N.; Wen, Y.; Yu, X.; Gu, L.; Guo, Y.-G. Sci. Adv. 2018, 4, eaar6018.
doi: 10.1126/sciadv.aar6018 |
[1] | Jiawei He, Liu Jiao, Xueyi Cheng, Guanghai Chen, Qiang Wu, Xizhang Wang, Lijun Yang, Zheng Hu. Structural Regulation of Metal Organic Framework-derived Hollow Carbon Nanocages and Their Lithium-Sulfur Battery Performance [J]. Acta Chimica Sinica, 2022, 80(7): 896-902. |
[2] | Shouxiao Chen, Junke Liu, Weichen Zheng, Guozhen Wei, Yao Zhou, Juntao Li. Electron/ion Conductor Double-coated LiNi0.8Co0.1Mn0.1O2 Li-ion Battery Cathode Material and Its Electrochemical Performance [J]. Acta Chimica Sinica, 2022, 80(4): 485-493. |
[3] | Baifan Wang, Yinwu He, Xin Wen, Congwei Niu, Zhen Xi. Prediction on the Resistance of Acetohydroxyacid Synthase Mutants to Herbicide Flumetsulam [J]. Acta Chimica Sinica, 2022, 80(2): 141-149. |
[4] | Xiaolan Xue, Yang Zhang, Meiyu Shi, Tianlin Li, Tianlong Huang, Jiqiu Qi, Fuxiang Wei, Yanwei Sui, Zhong Jin. Recent Progress on Organic Electrode Materials for Nonaqueous Magnesium Secondary Batteries [J]. Acta Chimica Sinica, 2022, 80(12): 1618-1628. |
[5] | Kai Qiu, Mingxia Yan, Shouwang Zhao, Shengli An, Wei Wang, Guixiao Jia. Theoretical Study on the Structural Stability and Oxygen Ion Oxidation of Al-doped Lithium-ion Battery Layered Cathode Li(Li0.17Ni0.17Al0.04Fe0.13Mn0.49)O2 [J]. Acta Chimica Sinica, 2021, 79(9): 1146-1153. |
[6] | Tongxin Li, Donglin Li, Qingbo Zhang, Jianhang Gao, Xiangze Kong, Xiaoyong Fan, Lei Gou. Preparation and Electrochemical Performance of Macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material [J]. Acta Chimica Sinica, 2021, 79(5): 678-684. |
[7] | Bixia Lin, Yingshan Huang, Shuai Chen, Zhenyu Xing. Research Progress of Key Materials for Sodium-selenium Batteries [J]. Acta Chimica Sinica, 2021, 79(5): 641-648. |
[8] | Yanli Li, Dandan Yu, Sen Lin, Dongfei Sun, Ziqiang Lei. Preparation of α-MnO2 Nanorods/Porous Carbon Cathode for Aqueous Zinc-ion Batteries [J]. Acta Chimica Sinica, 2021, 79(2): 200-207. |
[9] | Lu Zhang, Wenfeng Wang, Hongming Zhang, Shumin Han, Limin Wang. Research Progress and Challenge of Aqueous Zinc Ion Battery [J]. Acta Chimica Sinica, 2021, 79(2): 158-175. |
[10] | Ruiqi Dong, Feng Wu, Ying Bai, Chuan Wu. Sodium Storage Mechanism and Optimization Strategies for Hard Carbon Anode of Sodium Ion Batteries [J]. Acta Chimica Sinica, 2021, 79(12): 1461-1476. |
[11] | Qimei Liang, Yujiao Guo, Junming Guo, Mingwu Xiang, Xiaofang Liu, Wei Bai, Ping Ning. Preparation and High Temperature Electrochemical Performance of LiNi0.08Mn1.92O4 Cathode Material of Submicron Truncated Octahedron [J]. Acta Chimica Sinica, 2021, 79(12): 1526-1533. |
[12] | Xia Gao, Huibin Pan, Zengxian He, Ke Yang, Chengfang Qiao, Yongliang Liu, Chunsheng Zhou. Construction and Structure-Activity Relationship of Immobilized Enzyme Reactor Based on Al-MOF-Derived Al2O3 with Hierarchical Structure [J]. Acta Chimica Sinica, 2021, 79(12): 1502-1510. |
[13] | Qian Chen, Qin Kuang, Zhaoxiong Xie. Research Progress of Photocatalytic CO2 Reduction Based on Two-dimensional Materials [J]. Acta Chimica Sinica, 2021, 79(1): 10-22. |
[14] | Tang Gong-ao, Mao Kun, Zhang Jing, Lyu Pin, Cheng Xueyi, Wu Qiang, Yang Lijun, Wang Xizhang, Hu Zheng. Hierarchical Nitrogen-doped Carbon Nanocages as High-rate Long-life Cathode Material for Rechargeable Magnesium Batteries [J]. Acta Chimica Sinica, 2020, 78(5): 444-450. |
[15] | Liu Jiuding, Zhang Yudong, Liu Junxiang, Li Jinhan, Qiu Xiaoguang, Cheng Fangyi. In-situ Li3PO4 Coating of Li-Rich Mn-Based Cathode Materials for Lithium-ion Batteries [J]. Acta Chimica Sinica, 2020, 78(12): 1426-1433. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||