Review

Advances on Atmospheric Oxidation Mechanism of Typical Aromatic Hydrocarbons

  • Mengdi Song ,
  • Ying Liu ,
  • Xin Li ,
  • Sihua Lu
Expand
  • State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

Received date: 2021-05-20

  Online published: 2021-08-02

Supported by

National Natural Science Foundation of China(91844301); National Natural Science Foundation of China(91644108)

Abstract

Aromatic hydrocarbons are important precursors of ozone and secondary organic aerosols in the urban atmosphere, which have important impact on air pollution, climate change and human health. Thus the research on the oxidation mechanism of aromatic hydrocarbons has become one of the most challenging hotspots topics in atmospheric environmental chemistry. This paper reviews the recent studies of aromatic hydrocarbons oxidation mechanism, discusses the reaction channels and influencing factors during the oxidation process under high/low NOx conditions, and focuses on new discoveries and new theories in the studies of aromatic hydrocarbon oxidation reactions. In the atmosphere, the initiation of aromatic hydrocarbons is dominated by the reaction with the OH radicals. According to the different reaction products, the oxidation reaction of aromatic hydrocarbon is mainly divided into aldehyde pathway, phenolic pathway, bicyclic RO2 pathway and epoxide pathway. With the development of new theories such as the formation of polyhydroxy compounds by aldehyde pathway, alkoxy radical epoxidation reaction, intramolecular H-migration reaction of bicyclic peroxy radicals, 1,5-aldehydic H-shift reaction, and the generation of low-carbon products by CO-loss reaction, the understanding of aromatic hydrocarbons oxidation mechanisms has improved. However, due to the carbon missing and radical budgets imbalance problems in the existing oxidation mechanism, our understanding about the subsequent O3 and secondary organic aerosols formation mechanisms are very limited. Theoretical calculation and experiment are the main methods to study the oxidation mechanism of aromatic hydrocarbons. Mass spectrometry and spectroscopy are the dominant measurement techniques for the oxidation intermediates of aromatic hydrocarbons. Online mass spectrometry can capture the tracer intermediates at the molecular level, which plays an important role in revealing the oxidation mechanism of aromatic hydrocarbons. In recent years, tracer measurement technology, especially chromatography-mass spectrometry technology has developed rapidly. This open up a new direction for the accurate measurement of intermediates and the improvement of aromatic hydrocarbon oxidation mechanism. On this basis, improving aromatic hydrocarbons oxidation mechanism, paying attention to the carbon missing and radical budgets imbalance in the oxidation reaction, and exploring the environmental implication of aromatic hydrocarbons oxidation in the real atmospheric conditions are expected to become the important directions of aromatic hydrocarbon oxidation study in the future.

Cite this article

Mengdi Song , Ying Liu , Xin Li , Sihua Lu . Advances on Atmospheric Oxidation Mechanism of Typical Aromatic Hydrocarbons[J]. Acta Chimica Sinica, 2021 , 79(10) : 1214 -1231 . DOI: 10.6023/A21050224

References

[1]
Guo, S.; Hu, M.; Zamora, M. L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; Molina, M. J.; Zhang, R. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 17373.
[2]
Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K. R.; Slowik, J. G.; Platt, S. M.; Canonaco, F.; Zotter, P.; Wolf, R.; Pieber, S. M.; Bruns, E. A.; Crippa, M.; Ciarelli, G.; Piazzalunga, A.; Schwikowski, M.; Abbaszade, G.; Schnelle-Kreis, J.; Zimmermann, R.; An, Z.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prevot, A. S. H. Nature 2014, 514, 218.
[3]
Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; Lei, Y.; Liu, F.; Hong, C. P.; Kang, S. C.; Yan, L.; Zhang, Y. X.; Bo, Y.; Su, H.; Cheng, Y. F.; He, K. B. Atmos. Chem. Phys. 2019, 19, 8897.
[4]
Calvert, J. G.; Atkinson, R.; Becker, K. H.; Kamens, R. M.; Seinfeld, J. H.; Wallington, T. G.; Yarwood, G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, Oxford University Press, New York, 2002.
[5]
Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Atmos. Environ. 2008, 42, 6247.
[6]
Hu, D.; Tolocka, M.; Li, Q.; Kamens, R. M. Atmos. Environ. 2007, 41, 6478.
[7]
Wu, R.; Xie, S. Environ. Sci. Technol. 2017, 51, 2574.
[8]
Wu, F.; Wang, Y.; An, J.; Zhang, J. J. Environ. Sci.-China 2010, 31, 10. (in Chinese)
[8]
(吴方堃, 王跃思, 安俊琳, 张俊刚, 环境科学, 2010, 31, 10.)
[9]
Zhang, J.; Zhao, Y.; Zhao, Q.; Shen, G.; Liu, Q.; Li, C.; Zhou, D.; Wang, S. Atmosphere 2018, 9, 373.
[10]
Yu, D.; Tan, Z.; Lu, K.; Ma, X.; Li, X.; Chen, S.; Zhu, B.; Lin, L.; Li, Y.; Qiu, P.; Yang, X.; Liu, Y.; Wang, H.; He, L.; Huang, X.; Zhang, Y. Atmos. Environ. 2020, 224, 117304.
[11]
Song, M.; Tan, Q.; Feng, M.; Qu, Y.; Liu, X.; An, J.; Zhang, Y. J. Geophys. Res-Atmos. 2018, 123, 9741.
[12]
Wu, R.; Xie, S. Environ. Sci. Technol. 2018, 52, 8146.
[13]
Ng, N. L.; Kroll, J. H.; Chan, A. W. H.; Chhabra, P. S.; Flagan, R. C.; Seinfeld, J. H. Atmos. Chem. Phys. 2007, 7, 3909.
[14]
Kroflič, A.; Grilc, M.; Grgić, I. Sci. Rep. 2014, 5, 8859.
[15]
Pflieger, M.; Kroflič, A. J. Hazard. Mater. 2017, 338, 132.
[16]
Shiohara, N.; Fernández-Bremauntz, A. A.; Jiménez, S. B.; Yanagisawa, Y. Atmos. Environ. 2005, 39, 3481.
[17]
Kuykendall, J. R.; Shaw, S. L.; Dennis, P.; Kurt, F.; Sam, K.; Victor, K. Inhal. Toxicol. 2009, 21, 747.
[18]
Samet, J.; Chiu, W.; Cogliano, V.; Jinot, J.; Kriebel, D.; Lunn, R.; Beland, F.; Bero, L.; Browne, P.; Fritschi, L.; Kanno, J.; Lachenmeier, D.; Lan, Q.; Lasfargues, G.; Curieux, F.; Peters, S.; Shubat, P.; Sone, H.; White, M.; Wild, C. J. Natl. Cancer. I 2020, 112, 30.
[19]
Duarte-Davidson, R.; Courage, C.; Rushton, L.; Levy, L. Occup. Environ. Med. 2001, 58, 2.
[20]
Moolla, R.; Curtis, C. J.; Knight, J. 2015, 12, 4101.
[21]
Lin, P.; Liu, J.; Shilling, J. E.; Kathmann, S. M.; Laskin, J.; Laskin, A. Phys. Chem. Chem. Phys. 2015, 17, 23312.
[22]
Li, X.; Wang, Y.; Hu, M.; Tan, T.; Li, M.; Wu, Z.; Chen, S.; Tang, X. Atmos. Environ. 2020, 237, 117712.
[23]
Wang, Y.; Hu, M.; Li, X.; Xu, N. Prog. Chem. 2020, 32, 627. (in Chinese)
[23]
(王玉珏, 胡敏, 李晓, 徐楠, 化学进展, 2020, 32, 627.)
[24]
Wang, L.; Wu, R.; Xu, C. J. Phys. Chem. A 2013, 117, 14163.
[25]
Arey, J.; Obermeyer, G.; Aschmann, S. M.; Chattopadhyay, S.; Cusick, R. D.; Atkinson, R. Environ. Sci. Technol. 2009, 43, 683.
[26]
Zaytsev, A.; Koss, A. R.; Breitenlechner, M.; Krechmer, J. E.; Nihill, K. J.; Lim, C. Y.; Rowe, J. C.; Cox, J. L.; Moss, J.; Roscioli, J. R.; Canagaratna, M. R.; Worsnop, D. R.; Kroll, J. H.; Keutsch, F. N. Atmos. Chem. Phys. 2019, 19, 15117.
[27]
Xu, L.; Moller, K. H.; Crounse, J. D.; Kjaergaard, H. G.; Wennberg, P. O. Environ. Sci. Technol. 2020, 54, 13467.
[28]
Wang, S. N.; Newland, M. J.; Deng, W.; Rickard, A. R.; Hamilton, J. F.; Munoz, A.; Rodenas, M.; Vazquez, M. M.; Wang, L. M.; Wang, X. M. Environ. Sci. Technol. 2020, 54, 7798.
[29]
Schwantes, R. H.; Schilling, K. A.; McVay, R. C.; Lignell, H.; Coggon, M. M.; Zhang, X.; Wennberg, P. O.; Seinfeld, J. H. Atmos. Chem. Phys. 2017, 17, 3453.
[30]
Atkinson, R.; Aschmann, S. M.; Arey, J.; Carter, W. P. L. Int. J. Chem. Kinet. 1989, 21, 801.
[31]
Baltaretu, C. O.; Lichtman, E. I.; Hadler, A. B.; Elrod, M. J. J. Phys. Chem. A 2009, 113, 221.
[32]
Bandow, H.; Washida, N. Bull. Chem. Soc. Jpn. 1985, 58, 2541.
[33]
Becker, K. H.; Barnes, I.; Bierbach, A.; Brockmann, K.; Kirchner, F.; Klotz, B.; Libuda, H.; Mayer-Figge, A.; Mönninghoff, S.; Ruppert, L. E. A.; Thomas, W.; Wiesen, E.; Wirtz, K.; Zabel, F. Chemical Processes in Atmospheric Oxidation, Eds.: Georges, L. B., Springer, Berlin, Heidelberg, 1997, p. 79.
[34]
Birdsall, A. W.; Elrod, M. J. J. Phys. Chem. A 2011, 115, 5397.
[35]
Dumdei, B. E.; Kenny, D. V.; Shepson, P. B.; Kleindienst, T. E.; Nero, C. M.; Cupitt, L. T.; Claxton, L. D. Environ. Sci. Technol. 1988, 22, 1493.
[36]
Gery, M. W.; Fox, D. L.; Jeffries, H. E.; Stockburger, L.; Weathers, W. S. Int. J. Chem. Kinet. 1985, 17, 931.
[37]
Gomez Alvarez, E.; Viidanoja, J.; Munoz, A.; Wirtz, K.; Hjorth, J. Environ. Sci. Technol. 2007, 41, 8362.
[38]
Ji, Y.; Zhao, J.; Terazono, H.; Misawa, K.; Levitt, N. P.; Li, Y.; Lin, Y.; Peng, J.; Wang, Y.; Duan, L. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 8169.
[39]
Klotz, B.; Sorensen, S.; Barnes, I.; Becker, K. H.; Etzkorn, T.; Volkamer, R.; Platt, U.; Wirtz, K.; Martin-Reviejo, M. J. Phys. Chem. A 1998, 102, 10289.
[40]
Moschonas, N.; Danalatos, D.; Glavas, S. Atmos. Environ. 1999, 33, 111.
[41]
Nishino, N.; Arey, J.; Atkinson, R. J. Phys. Chem. A 2010, 114, 10140.
[42]
Seuwen, R.; Warneck, P. Int. J. Chem. Kinet. 1996, 28, 315.
[43]
Smith, D. F.; McIver, C. D.; Kleindienst, T. E. J. Atmos. Chem. 1998, 30, 209.
[44]
Tuazon, E. C.; Macleod, H.; Atkinson, R.; Carter, W. P. L. Environ. Sci. Technol. 1986, 20, 383.
[45]
Volkamer, R.; Platt, U.; Wirtz, K. J. Phys. Chem. A 2001, 105, 7865.
[46]
Atkinson, R.; Carter, W. P. L.; Darnall, K. R.; Winer, A. M.; Pitts, J. N. Int. J. Chem. Kinet. 1980, 12, 779.
[47]
Atkinson, R.; Carter, W. P. L.; Winer, A. M. J. Phys. Chem. 1983, 87, 1605.
[48]
Shepson, P. B.; Edney, E. O.; Corse, E. W. J. Phys. Chem. 1984, 88, 4122.
[49]
Tuazon, E. C.; Atkinson, R.; Macleod, H.; Biermann, H. W.; Winer, A. M.; Carter, W. P. L.; Pitts, J. N. Environ. Sci. Technol. 1984, 18, 981.
[50]
Atkinson, R.; Aschmann, S. M. Int. J. Chem. Kinet. 1994, 26, 929.
[51]
Wang, S.; Wu, R.; Berndt, T.; Ehn, M.; Wang, L. Environ. Sci. Technol. 2017, 51, 8442.
[52]
Volkamer, R.; Jimenez, J. L.; San Martini, F.; Dzepina, K.; Zhang, Q.; Salcedo, D.; Molina, L. T.; Worsnop, D. R.; Molina, M. J. Geophys. Res. Lett. 2006, 33, L17811.
[53]
Wang, Z.; Hu, M.; Wu, Z.; Yue, D. Acta Chim. Sinica 2013, 71, 519. (in Chinese)
[53]
(王志彬, 胡敏, 吴志军, 岳玎利, 化学学报, 2013, 71, 519.)
[54]
Guo, S.; Hu, M.; Shang, D.; Guo, Q.; Hu, W. Acta Chim. Sinica 2014, 72, 145. (in Chinese)
[54]
(郭松, 胡敏, 尚冬杰, 郭庆丰, 胡伟伟, 化学学报, 2014, 72, 145.)
[55]
Wang, H.; Yu, Y.; Tang, R.; Guo, S. Acta Chim. Sinica 2020, 78, 516. (in Chinese)
[55]
(王辉, 俞颖, 唐荣志, 郭松, 化学学报, 2020, 78, 516.)
[56]
Hoshino, M.; Akimoto, H.; Okuda, M. Bull. Chem. Soc. Jpn. 1978, 51, 718.
[57]
Uc, V. H.; García-Cruz, I.; Hernández-Laguna, A.; Vivier-Bunge, A. J. Phys. Chem. A 2000, 104, 7849.
[58]
Bloss, C.; Wagner, V.; Bonzanini, A.; Jenkin, M. E.; Wirtz, K.; Martin-Reviejo, M.; Pilling, M. J. Atmos. Chem. Phys. 2005, 5, 623.
[59]
Andino, J. M.; Vivier-Bunge, A. Adv. Quantum Chem. 2008, 55, 297.
[60]
Birdsall, A. W.; Andreoni, J. F.; Elrod, M. J. J. Phys. Chem. A 2010, 114, 10655.
[61]
Nehr, S.; Bohn, B.; Wahner, A. J. Phys. Chem. A 2011, 116, 6015.
[62]
Wu, R.; Pan, S.; Li, Y.; Wang, L. J. Phys. Chem. A 2014, 118, 4533.
[63]
Vereecken, L. Advances in Atmospheric Chemistry, World Scientific Publishing Co Pte Ltd., Singapore, 2019, pp. 377-527.
[64]
Lin, W.; Janet, A.; Roger, A. Environ. Sci. Technol. 2005, 39, 5302.
[65]
Roger, A.; Janet, A. Chem. Rev. 2003, 103, 4605.
[66]
Uc, V. H.; Alvarez-Idaboy, J. R.; Galano, A.; Vivier-Bunge, A. J. Phys. Chem. A 2008, 112, 7608.
[67]
Molina, M. J.; Zhang, R.; Broekhuizen, K.; Lei, W.; Navarro, R.; Molina, L. T. J. Am. Chem. Soc. 1999, 121, 10225.
[68]
Bohn, B. J. Phys. Chem. A 2001, 105, 6092.
[69]
Suh, I.; Dan, Z.; Zhang, R.; Molina, L. T.; Molina, M. J. Chem. Phys. Lett. 2002, 364, 454.
[70]
Fan, J.; Zhang, R. J. Phys. Chem. A 2008, 112, 4314.
[71]
Huang, M.; Wang, Z.; Hao, L.; Zhang, W. Comput. Theor. Chem. 2011, 965, 285.
[72]
Newland, M. J.; Jenkin, M. E.; Rickard, A. R. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E7856.
[73]
Suh, I.; Zhang, R.; Molina, L. T.; Molina, M. J. J. Am. Chem. Soc. 2003, 125, 12655.
[74]
Pan, S.; Wang, L. Acta Phys.-Chim. Sin. 2015, 31, 2259.
[75]
Bartolotti, L. J.; Edney, E. O. Chem. Phys. Lett. 1995, 245, 119.
[76]
Yu, J.; Jeffries, H. E.; Sexton, K. G. Atmos. Environ. 1997, 31, 2261.
[77]
Ghigo, G.; Tonachini, G. J. Am. Chem. Soc. 1998, 120, 6753.
[78]
Frankcombe, T. J.; Smith, S. C. J. Phys. Chem. A 2007, 111, 3686.
[79]
Frankcombe, T. J.; Smith, S. C. J. Phys. Chem. A 2007, 111, 3691.
[80]
Lay, T. H.; Bozzelli, J. W.; Seinfeld, J. H. J. Phys. Chem. 1996, 100, 6543.
[81]
Koch, R.; Knispel, R.; Elend, M.; Siese, M.; Zetzsch, C. Atmos. Chem. Phys. 2007, 7, 2057.
[82]
Pan, S.; Wang, L. J. Phys. Chem. A 2014, 118, 10778.
[83]
Motta, F.; Ghigo, G.; Tonachini, G. J. Phys. Chem. A 2002, 106, 4411.
[84]
Qian, X.; Shen, H.; Chen, Z. Atmos. Environ. 2019, 214, 116845.
[85]
Perring, A. E.; Pusede, S. E.; Cohen, R. C. Chem. Rev. 2013, 113, 5848.
[86]
Walker, H. M.; Stone, D.; Ingham, T.; Vaughan, S.; Cain, M.; Jones, R. L.; Kennedy, O. J.; McLeod, M.; Ouyang, B.; Pyle, J.; Bauguitte, S.; Bandy, B.; Forster, G.; Evans, M. J.; Hamilton, J. F.; Hopkins, J. R.; Lee, J. D.; Lewis, A. C.; Lidster, R. T.; Punjabi, S.; Morgan, W. T.; Heard, D. E. Atmos. Chem. Phys. 2015, 15, 8179.
[87]
Bianchi, F.; Kurten, T.; Riva, M.; Mohr, C.; Rissanen, M. P.; Roldin, P.; Berndt, T.; Crounse, J. D.; Wennberg, P. O.; Mentel, T. F.; Wildt, J.; Junninen, H.; Jokinen, T.; Kulmala, M.; Worsnop, D. R.; Thornton, J. A.; Donahue, N.; Kjaergaard, H. G.; Ehn, M. Chem. Rev. 2019, 119, 3472.
[88]
Jenkin, M. E.; Valorso, R.; Aumont, B.; Rickard, A. R.; Wallington, T. J. Atmos. Chem. Phys. 2018, 18, 9329.
[89]
Boyd, A. A.; Lesclaux, R. Int. J. Chem. Kinet. 1997, 29, 323.
[90]
Boyd, A. A.; Noziere, B.; Lesclaux, R. J. Chem. Soc., Faraday Trans. 1996, 92, 201.
[91]
Boyd, A. A.; Villenave, E.; Lesclaux, R. Int. J. Chem. Kinet. 1999, 31, 37.
[92]
Boyd, A. A.; Villenave, E.; Lesclaux, R. Atmos. Environ. 2003, 37, 2751.
[93]
Glover, B. G.; Miller, T. A. J. Phys. Chem. A 2005, 109, 11191.
[94]
Hansen, J. C.; Li, Y. M.; Rosado-Reyes, C. M.; Francisco, J. S.; Szente, J. J.; Maricq, M. M. J. Phys. Chem. A 2003, 107, 5306.
[95]
Jenkin, M. E.; Boyd, A. A.; Lesclaux, R. J. Atmos. Chem. 1998, 29, 267.
[96]
Jenkin, M. E.; Hayman, G. D. J. Chem. Soc., Faraday Trans. 1995, 91, 1911.
[97]
Jenkin, M. E.; Murrells, T. P.; Shalliker, S. J.; Hayman, G. D. J. Chem. Soc., Faraday Trans. 1993, 89, 433.
[98]
Le Crane, I. P.; Villenave, E. Int. J. Chem. Kinet. 2006, 38, 276.
[99]
Le Crane, J. P.; Villenave, E.; Hurley, M. D.; Wallington, T. J.; Nishida, S.; Takahashi, K.; Matsumi, Y. J. Phys. Chem. A 2004, 108, 795.
[100]
Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman, G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Atmos. Environ. 1992, 26, 1805.
[101]
Noziere, B.; Hanson, D. R. J. Phys. Chem. A 2017, 121, 8453.
[102]
Rowley, D. M.; Lightfoot, P. D.; Lesclaux, R.; Wallington, T. J. J. Chem. Soc., Faraday Trans. 1991, 87, 3221.
[103]
Rowley, D. M.; Lightfoot, P. D.; Lesclaux, R.; Wallington, T. J. J. Chem. Soc., Faraday Trans. 1992, 88, 1369.
[104]
Tomas, A.; Lesclaux, R. Chem. Phys. Lett. 2000, 319, 521.
[105]
Villenave, E.; Lesclaux, R. J. Phys. Chem. 1996, 100, 14372.
[106]
Villenave, E.; Lesclaux, R.; Seefeld, S.; Stockwell, W. R. J. Geophys. Res.-Atmos. 1998, 103, 25273.
[107]
Assaf, E.; Song, B.; Tomas, A.; Schoemaecker, C.; Fittschen, C. J. Phys. Chem. A 2016, 120, 8923.
[108]
Assaf, E.; Tanaka, S.; Kajii, Y.; Schoemaecker, C.; Fittschen, C. Chem. Phys. Lett. 2017, 684, 245.
[109]
deGouw, J. A.; Howard, C. J. J. Phys. Chem. A 1997, 101, 8662.
[110]
Eberhard, J.; Howard, C. J. Int. J. Chem. Kinet. 1996, 28, 731.
[111]
Eberhard, J.; Howard, C. J. J. Phys. Chem. A 1997, 101, 3360.
[112]
Elrod, M. J. J. Phys. Chem. A 2011, 115, 8125.
[113]
Farago, E. P.; Schoemaecker, C.; Viskolcz, B.; Fittschen, C. Chem. Phys. Lett. 2015, 619, 196.
[114]
Hsin, H. Y.; Elrod, M. J. J. Phys. Chem. A 2007, 111, 613.
[115]
Miller, A. M.; Yeung, L. Y.; Kiep, A. C.; Elrod, M. J. Phys. Chem. Chem. Phys. 2004, 6, 3402.
[116]
Yan, C.; Kocevska, S.; Krasnoperov, L. N. J. Phys. Chem. A 2016, 120, 6111.
[117]
Andino, J. M.; Smith, J. N.; Flagan, R. C.; Goddard, W. A.; Seinfeld, J. H. J. Phys. Chem. 1996, 100, 10967.
[118]
Suh, I.; Zhao, J.; Zhang, R. Chem. Phys. Lett. 2006, 432, 313.
[119]
Berndt, T.; Boge, O. Phys. Chem. Chem. Phys. 2006, 8, 1205.
[120]
Paulot, F.; Crounse, J. D.; Kjaergaard, H. G.; Kuerten, A.; St Clair, J. M.; Seinfeld, J. H.; Wennberg, P. O. Science 2009, 325, 730.
[121]
Peeters, J.; Nguyen, T. L.; Vereecken, L. Phys. Chem. Chem. Phys. 2009, 11, 5935.
[122]
Dawson, M. L.; Xu, J.; Griffin, R. J.; Dabdub, D. Geosci. Model. Dev. 2016, 9, 2143.
[123]
Xu, J.; Griffin, R. J.; Liu, Y.; Nakao, S.; Cocker, D. R., III. Atmos. Environ. 2015, 101, 217.
[124]
Le Breton, M.; McGillen, M. R.; Muller, J. B. A.; Bacak, A.; Shallcross, D. E.; Xiao, P.; Huey, L. G.; Tanner, D.; Coe, H.; Percival, C. J. Atmos. Meas. Tech. 2012, 5, 3029.
[125]
Paulot, F.; Wunch, D.; Crounse, J. D.; Toon, G. C.; Millet, D. B.; DeCarlo, P. F.; Vigouroux, C.; Deutscher, N. M.; Abad, G. G.; Notholt, J.; Warneke, T.; Hannigan, J. W.; Warneke, C.; de Gouw, J. A.; Dunlea, E. J.; De Maziere, M.; Griffith, D. W. T.; Bernath, P.; Jimenez, J. L.; Wennberg, P. O. Atmos. Chem. Phys. 2011, 11, 1989.
[126]
Priestley, M.; Bannan, T. J.; Le Breton, M.; Worrall, S. D.; Kang, S.; Pullinen, I.; Schmitt, S.; Tillmann, R.; Kleist, E.; Zhao, D.; Wildt, J.; Garmash, O.; Mehra, A.; Bacak, A.; Shallcross, D. E.; Kiendler- Scharr, A.; Hallquist, A. M.; Ehn, M.; Coe, H.; Percival, C. J.; Hallquist, M.; Mentel, T. F.; McFiggans, G. Atmos. Chem. Phys. 2021, 21, 3473.
[127]
Garmash, O.; Rissanen, M. P.; Pullinen, I.; Schmitt, S.; Kausiala, O.; Tillmann, R.; Zhao, D.; Percival, C.; Bannan, T. J.; Priestley, M.; Hallquist, A. M.; Kleist, E.; Kiendler-Scharr, A.; Hallquist, M.; Berndt, T.; McFiggans, G.; Wildt, J.; Mentel, T.; Ehn, M. Atmos. Chem. Phys. 2020, 20, 515.
[128]
Stirnweis, L.; Marcolli, C.; Dommen, J.; Barmet, P.; Frege, C.; Platt, S. M.; Bruns, E. A.; Krapf, M.; Slowik, J. G.; Wolf, R.; Prevot, A. S. H.; Baltensperger, U.; El-Haddad, I. Atmos. Chem. Phys. 2017, 17, 5035.
[129]
Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.; Chan, M.; Loza, C. L.; Kwan, A. J.; Hersey, S. P.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 6640.
[130]
Qi, X.; Zhu, S.; Zhu, C.; Hu, J.; Lou, S.; Xu, L.; Dong, J.; Cheng, P. Sci. Total Environ. 2020, 727.
[131]
Glowacki, D. R.; Wang, L.; Pilling, M. J. J. Phys. Chem. A 2009, 113, 5385.
[132]
Huang, M. Q.; Zhang, W. J.; Wang, Z. Y.; Hao, L. Q.; Zhao, W. W.; Liu, X. Y.; Long, B.; Fang, L. J. Mol. Struc.-Theochem. 2008, 862, 28.
[133]
Li, Y.; Wang, L. Phys. Chem. Chem. Phys. 2014, 16, 17908.
[134]
Ponnusamy, S.; Sandhiya, L.; Senthilkumar, K. New J. Chem. 2017, 41, 10259.
[135]
Klotz, B. r.; Volkamer, R.; Hurley, M. D.; Andersen, M. P. S.; Nielsen, O. J.; Barnes, I.; Imamura, T.; Wirtz, K.; Becker, K.-H.; Platt, U.; Wallington, T. J.; Washida, N. Phys. Chem. Chem. Phys. 2002, 4, 4399.
[136]
Huang, M.; Wang, Z.; Hao, L.; Zhang, W. J. Mol. Struc.-Theochem. 2010, 944, 21.
[137]
Nehr, S.; Bohn, B.; Dorn, H. P.; Fuchs, H.; Haeseler, R.; Hofzumahaus, A.; Li, X.; Rohrer, F.; Tillmann, R.; Wahner, A. Atmos. Chem. Phys. 2014, 14, 6941.
[138]
Deng, W.; Liu, T.; Zhang, Y.; Situ, S.; Hu, Q.; He, Q.; Zhang, Z.; Lu, S.; Bi, X.; Wang, X.; Boreave, A.; George, C.; Ding, X.; Wang, X. Atmos. Environ. 2017, 150, 67.
[139]
Cocker, D. R.; Flagan, R. C.; Seinfeld, J. H. Environ. Sci. Technol. 2001, 35, 2594.
[140]
Carter, W. P. L.; Iii, D. R. C.; Fitz, D. R.; Malkina, I. L.; Bumiller, K.; Sauer, C. G.; Pisano, J. T.; Bufalino, C.; Song, C. Atmos. Environ. 2005, 39, 7768.
[141]
Presto, A. A.; Hartz, K. E. H.; Donahue, N. M. Environ. Sci. Technol. 2005, 39, 7036.
[142]
Platt, S. M.; El Haddad, I.; Zardini, A. A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J. G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; Drinovec, L.; Močnik, G.; Möhler, O.; Richter, R.; Barmet, P.; Bianchi, F.; Baltensperger, U.; Prévôt, A. S. H. Atmos. Chem. Phys. 2013, 13, 9141.
[143]
Hu, D.; Kamens, R. M. Atmos. Environ. 2007, 41, 6465.
[144]
Kang, E.; Toohey, D. W.; Brune, W. H. Atmos. Chem. Phys. 2011, 11, 1837.
[145]
Kang, E.; Root, M. J.; Toohey, D. W.; Brune, W. H. Atmos. Chem. Phys. 2007, 7, 5727.
[146]
Yang, X.; Wang, H.; Tan, Z.; Lu, K.; Zhang, Y. Acta Chim. Sinica 2019, 77, 613. (in Chinese)
[146]
(杨新平, 王海潮, 谭照峰, 陆克定, 张远航, 化学学报, 2019, 77, 613.)
[147]
Wang, T.; Španěl, P.; Smith, D. Int. J. Mass Spectrom. 2004, 239, 139.
[148]
Hak, C.; Pundt, I.; Trick, S.; Kern, C.; Platt, U.; Dommen, J.; Ordonez, C.; Prevot, A. S. H.; Junkermann, W.; Astorga-Llorens, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lorzer, J. C.; Braathen, G. O.; Volkamer, R. Atmos. Chem. Phys. 2005, 5, 2881.
[149]
Fuchs, H.; Holland, F.; Hofzumahaus, A. Rev. Sci. Instrum. 2008, 79, 084104.
[150]
Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S. Atmos. Chem. Phys. 2008, 8, 7779.
[151]
Thalman, R.; Volkamer, R. Atmos. Meas. Tech. 2010, 3, 1797.
[152]
Aufmhoff, H.; Hanke, M.; Uecker, J.; Schlager, H.; Arnold, F. Int. J. Mass Spectrom. 2011, 308, 26.
[153]
Hornbrook, R. S.; Crawford, J. H.; Edwards, G. D.; Goyea, O.; Mauldin, R. L.,III; Olson, J. S.; Cantrell, C. A. Atmos. Meas. Tech. 2011, 4, 735.
[154]
Fuchs, H.; Dorn, H. P.; Bachner, M.; Bohn, B.; Brauers, T.; Gomm, S.; Hofzumahaus, A.; Holland, F.; Nehr, S.; Rohrer, F.; Tillmann, R.; Wahner, A. Atmos. Meas. Tech. 2012, 5, 1611.
[155]
Jokinen, T.; Sipila, M.; Junninen, H.; Ehn, M.; Lonn, G.; Hakala, J.; Petaja, T.; Mauldin, R. L., III; Kulmala, M.; Worsnop, D. R. Atmos. Chem. Phys. 2012, 12, 4117.
[156]
Ehn, M.; Thornton, J. A.; Kleist, E.; Sipila, M.; Junninen, H.; Pullinen, I.; Springer, M.; Rubach, F.; Tillmann, R.; Lee, B.; Lopez-Hilfiker, F.; Andres, S.; Acir, I.-H.; Rissanen, M.; Jokinen, T.; Schobesberger, S.; Kangasluoma, J.; Kontkanen, J.; Nieminen, T.; Kurten, T.; Nielsen, L. B.; Jorgensen, S.; Kjaergaard, H. G.; Canagaratna, M.; Dal Maso, M.; Berndt, T.; Petaja, T.; Wahner, A.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D. R.; Wildt, J.; Mentel, T. F. Nature 2014, 506, 476.
[157]
Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Kurten, T.; Worsnop, D. R.; Thornton, J. A. Environ. Sci. Technol. 2014, 48, 6309.
[158]
Pang, X.; Lewis, A. C.; Rickard, A. R.; Baeza-Romero, M. T.; Adams, T. J.; Ball, S. M.; Daniels, M. J. S.; Goodall, I. C. A.; Monks, P. S.; Peppe, S.; Rodenas Garcia, M.; Sanchez, P.; Munoz, A. Atmos. Meas. Tech. 2014, 7, 373.
[159]
Veres, P. R.; Roberts, J. M.; Wild, R. J.; Edwards, P. M.; Brown, S. S.; Bates, T. S.; Quinn, P. K.; Johnson, J. E.; Zamora, R. J.; de Gouw, J. Atmos. Chem. Phys. 2015, 15, 8101.
[160]
Lopez-Hilfiker, F. D.; Iyer, S.; Mohr, C.; Lee, B. H.; D'Ambro, E. L.; Kurten, T.; Thornton, J. A. Atmos. Meas. Tech. 2016, 9, 1505.
[161]
Sanchez, J.; Tanner, D. J.; Chen, D.; Huey, L. G.; Ng, N. L. Atmos. Meas. Tech. 2016, 9, 3851.
[162]
Thieser, J.; Schuster, G.; Schuladen, J.; Phillips, G. J.; Reiffs, A.; Parchatka, U.; Pöhler, D.; Lelieveld, J.; Crowley, J. N. Atmos. Meas. Tech. 2016, 9, 553.
[163]
Stoenner, C.; Derstroff, B.; Kluepfel, T.; Crowley, J. N.; Williams, J. J. Mass Spectrom. 2017, 52, 30.
[164]
Hansel, A.; Scholz, W.; Mentler, B.; Fischer, L.; Berndt, T. Atmos. Environ. 2018, 186, 248.
[165]
Albrecht, S. R.; Novelli, A.; Hofzumahaus, A.; Kang, S.; Baker, Y.; Mentel, T.; Wahner, A.; Fuchs, H. Atmos. Meas. Tech. 2019, 12, 891.
[166]
Liu, J.; Li, X.; Yang, Y.; Wang, H.; Wu, Y.; Lu, X.; Chen, M.; Hu, J.; Fan, X.; Zeng, L.; Zhang, Y. Atmos. Meas. Tech. 2019, 12, 4439.
[167]
Riva, M.; Rantala, P.; Krechmer, J. E.; Perakyla, O.; Zhang, Y.; Heikkinen, L.; Garmash, O.; Yan, C.; Kulmala, M.; Worsnop, D.; Ehn, M. Atmos. Meas. Tech. 2019, 12, 2403.
[168]
Li, C.; Wang, H.; Chen, X.; Zhai, T.; Chen, S.; Li, X.; Zeng, L.; Lu, K. Atmos. Meas. Tech. 2021, 14, 4033.
[169]
McFiggans, G.; Mentel, T. F.; Wildt, J.; Pullinen, I.; Kang, S.; Kleist, E.; Schmitt, S.; Springer, M.; Tillmann, R.; Wu, C.; Zhao, D.; Hallquist, M.; Faxon, C.; Le Breton, M.; Hallquist, A. M.; Simpson, D.; Bergstrom, R.; Jenkin, M. E.; Ehn, M.; Thornton, J. A.; Alfarra, M. R.; Bannan, T. J.; Percival, C. J.; Priestley, M.; Topping, D.; Kiendler-Scharr, A. Nature 2019, 565, 587.
Outlines

/