Review

Advances in Functionalized Carriers Based on Graphene's Unique Biological Interface Effect

  • Hua Yue ,
  • Guanghui Ma
Expand
  • a Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    b University of Chinese Academy of Sciences, Beijing 100049, China
* E-mail:

Received date: 2021-06-03

  Online published: 2021-08-09

Supported by

Beijing Municipal Natural Science Foundation(2202056); Key Program of National Natural Science Foundation of China(32030062)

Abstract

The interaction of two-dimensional graphene and its derivatives with biological interfaces exhibits distinct properties and advantages over traditional dimensional particles, offering potential strategies for the design and development of functionalized pharmaceutical carriers. Apart from the excellent electrical, thermal and optical properties, the two-dimensional structure endows the graphene stronger interactions with cell membranes and then induces obvious cellular response. These responses include the horizontal friction/slant insertion or sandwiched superstructure, selective internalization by phagocytes, folding effect upon the limited intracellular space, autophagy phenomenon and invisible activation. Based on these unique interfacial effects and theoretical simulation mechanisms, rational designs will meet the needs of drug delivery, vaccine carriers, imaging and sensing, and photothermal therapy as well as good biosafety. This review concludes our researches of exploring the biological interface effects, dynamic molecular mechanism, and applications regarding graphene (oxide) in the past 10 years. Meanwhile, it also covers the latest international progress, in order to provide theoretical basis and prospective prediction for the design, construction, and application of efficient and safe graphene systems.

Cite this article

Hua Yue , Guanghui Ma . Advances in Functionalized Carriers Based on Graphene's Unique Biological Interface Effect[J]. Acta Chimica Sinica, 2021 , 79(10) : 1244 -1256 . DOI: 10.6023/A21050238

References

[1]
Geim, A. K. Science 2009, 324, 1530.
[2]
Janegitz, B. C.; Silva, T. A.; Wong, A.; Ribovski, L.; Vicentini, F. C.; Sotomayor, M. D. T.; Fatibello, O. Biosens. Bioelectron. 2017, 89, 224.
[3]
Kuok, F. H.; Liao, C. Y.; Wan, T. H.; Yeh, P. W.; Cheng, I. C.; Chen, J. Z. J. Alloys Compd. 2017, 692, 558.
[4]
Sun, C. B.; Liu, Y. Q.; Sheng, J. Z.; Huang, Q. K.; Lv, W.; Zhou, G. M.; Cheng, H. M. Mater. Horiz. 2020, 7, 2487.
[5]
Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523.
[6]
Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y. C.; Chen, H. A.; Chen, I. S.; Chen, L. C.; Chen, K. H.; Nemoto, T.; Isoda, S.; Chen, M. W.; Fujita, T.; Eda, G.; Yamaguchi, H.; Chhowalla, M.; Chen, C. W. Angew. Chem. Int. Ed. 2012, 51, 6662.
[7]
Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Adv. Mater. 2016, 28, 6052.
[8]
Qian, J.; Wang, D.; Cai, F. H.; Xi, W.; Peng, L.; Zhu, Z. F.; He, H.; Hu, M. L.; He, S. L. Angew. Chem. Int. Ed. 2012, 51, 10570.
[9]
Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 6825.
[10]
Chen, D.; Feng, H. B.; Li, J. H. Chem. Rev. 2012, 112, 6027.
[11]
Zhao, K. L.; Hao, Y. G.; Zhu, M.; Cheng, G. S. Acta Chim. Sinica 2018, 76, 168. (in Chinese)
[11]
(赵克丽, 郝莹, 朱墨, 程国胜, 化学学报, 2018, 76, 168.)
[12]
Bullock, C. J.; Bussy, C. Adv. Mater. Interf. 2019, 6, 1900229.
[13]
Daneshmandi, L.; Barajaa, M.; Rad, A. T.; Sydlik, S. A.; Laurencin, C. T. Adv. Healthc. Mater. 2020, 2001414.
[14]
Yue, H.; Wei, W.; Yue, Z.; Wang, B.; Luo, N.; Gao, Y.; Ma, D.; Ma, G.; Su, Z. Biomaterials 2012, 33, 4013.
[15]
Zhang, W. D.; Yan, L.; Li, M.; Zhao, R. S.; Yang, X.; Ji, T. J.; Gu, Z. J.; Yin, J. J.; Gao, X. F.; Nie, G. J. Toxicol. Lett. 2015, 237, 61.
[16]
Liao, K. H.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. ACS Appl. Mater. Inter. 2011, 3, 2607.
[17]
Liu, J.; Zhang, D. D.; Lian, S.; Zheng, J. X.; Li, B. F.; Li, T.; Jia, L. Int. J. Nanomed. 2018, 13, 7457.
[18]
Hu, W. B.; Peng, C.; Lv, M.; Li, X. M.; Zhang, Y. J.; Chen, N.; Fan, C. H.; Huang, Q. ACS Nano 2011, 5, 3693.
[19]
Yang, K.; Wan, J. M.; Zhang, S.; Tian, B.; Zhang, Y. J.; Liu, Z. Biomaterials 2012, 33, 2206.
[20]
Ding, Z.; Luo, N.; Yue, H.; Gao, Y.; Ma, G.; Wei, W. J. Mater. Chem. B 2020, 8, 6845.
[21]
Yue, H.; Ma, G. H. Acta Polym. Sin. 2020, 51, 125. (in Chinese)
[21]
(岳华, 马光辉, 高分子学报, 2020, 51, 125.)
[22]
Ma, G. H.; Yue, H. Chin. J. Chem. 2020, 38, 911.
[23]
Yue, H.; Wei, W.; Yue, Z.; Lv, P.; Wang, L.; Ma, G.; Su, Z. Eur. J. Pharm. Sci. 2010, 41, 650.
[24]
Chen, P.; Yue, H.; Zhai, X.; Huang, Z.; Ma, G. H.; Wei, W.; Yan, L. T. Sci. Adv. 2019, 5, eaaw3192.
[25]
Chen, G. Y.; Yang, H. J.; Lu, C. H.; Chao, Y. C.; Hwang, S. M.; Chen, C. L.; Lo, K. W.; Sung, L. Y.; Luo, W. Y.; Tuan, H. Y.; Hu, Y. C. Biomaterials 2012, 33, 6559.
[26]
Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R. P.; Zuo, Y. Y.; Xia, T.; Liu, S. ACS Nano 2015, 9, 10498.
[27]
Wu, S. Y.; An, S. S. A.; Hulme, J. Int. J. Nanomed. 2015, 10, 9.
[28]
Hao, B. J.; Song, T.; Huang, X. Y.; Ye, M.; Qian, W. H. Chin. J. Org. Chem. 2020, 40, 3279. (in Chinese)
[28]
(郝冰洁, 宋涛, 黄晓宇, 叶茂, 钱文昊, 有机化学, 2020, 40, 3279.)
[29]
Ma, M. H.; Xu, M.; Liu, S. J. Acta Chim. Sinica 2020, 78, 877. (in Chinese)
[29]
(马明昊, 徐明, 刘思金, 化学学报, 2020, 78, 877.)
[30]
Luo, N.; Ni, D.; Yue, H.; Wei, W.; Ma, G. ACS Appl. Mater. Inter. 2015, 7, 5239.
[31]
Luo, N.; Weber, J. K.; Wang, S.; Luan, B.; Yue, H.; Xi, X.; Du, J.; Yang, Z.; Wei, W.; Zhou, R.; Ma, G. Nat. Commun. 2017, 8, 14537.
[32]
Ding, Z. W. Ph.D. Dissertation, University of Chinese Academy of Sciences, Beijing, 2020. (in Chinese)
[32]
(丁昭文, 博士论文, 中国科学院大学, 北京, 2020.)
[33]
Sun, X. T.; Feng, Z. W.; Hou, T. J.; Li, Y. Y. ACS Appl. Mater. Inter. 2014, 6, 7153.
[34]
Zuo, G.; Zhou, X.; Huang, Q.; Fang, H. P.; Zhou, R. H. J. Phys. Chem. C 2011, 115, 23323.
[35]
Yue, H.; Wei, W.; Gu, Z.; Ni, D.; Luo, N.; Yang, Z.; Zhao, L.; Garate, J. A.; Zhou, R.; Su, Z.; Ma, G. Nanoscale 2015, 7, 19949.
[36]
Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P.; Zhou, R. H. Nat. Nanotech. 2013, 8, 594.
[37]
Duan, G. X.; Kang, S. G.; Tian, X.; Garate, J. A.; Zhao, L.; Ge, C. C.; Zhou, R. H. Nanoscale 2015, 7, 15214.
[38]
Zhang, X.; Ding, Z.; Ma, G.; Wei, W. Adv. Sci. 2021, 8, 2004506.
[39]
Chen, S. H.; Perez-Aguilar, J. M.; Zhou, R. H. Nanoscale 2020, 12, 7939.
[40]
Mao, J.; Guo, R.; Yan, L. T. Biomaterials 2014, 35, 6069.
[41]
Yan, L. T.; Yu, X. Nanoscale 2011, 3, 3812.
[42]
Shen, H.; Zhang, L. M.; Liu, M.; Zhang, Z. J. Theranostics 2012, 2, 283.
[43]
Feng, L. Z.; Liu, Z. A. Nanomedicine 2011, 6, 317.
[44]
Nasrollahzadeh, M.; Babaei, F.; Fakhri, P.; Jaleh, B. RSC Adv. 2015, 5, 10782.
[45]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Nat. Commun. 2018, 9, 1410
[46]
Kim, H.; Namgung, R.; Singha, K.; Oh, I. K.; Kim, W. J. Bioconjug. Chem. 2011, 22, 2558.
[47]
Cao, W.; He, L.; Cao, W.; Huang, X.; Jia, K.; Dai, J. Acta Biomater. 2020, 112, 14.
[48]
Sinha, A.; Cha, B. G.; Choi, Y. J.; Nguyen, T. L.; Yoo, P. J.; Jeong, J. H.; Kim, J. Chem. Mater. 2017, 29, 6883.
[49]
Cao, Y. H.; Ma, Y. F.; Zhang, M. X.; Wang, H. M.; Tu, X. L.; Shen, H.; Dai, J. W.; Guo, H. C.; Zhang, Z. J. Adv. Funct. Mater. 2014, 24, 6963.
[50]
Meng, C.; Zhi, X.; Li, C.; Li, C.; Chen, Z.; Qiu, X.; Ding, C.; Ma, L.; Lu, H.; Chen, D.; Liu, G.; Cui, D. ACS Nano 2016, 10, 2203.
[51]
Xu, L. G.; Xiang, J.; Liu, Y.; Xu, J.; Luo, Y. C.; Feng, L. Z.; Liu, Z.; Peng, R. Nanoscale 2016, 8, 3785.
[52]
Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H. N.; Wei, H. T.; Zhang, H.; Sun, H. C.; Yang, B. Chem. Commun. 2011, 47, 6858.
[53]
Wan, J. X.; Chen, X. Y.; Wang, C.; Fang, X. H. J. Func. Mater. 2017, 48, 8024. (in Chinese)
[53]
(万吉祥, 陈小源, 王聪, 方小红, 2017, 48, 8024.)
[54]
Wu, X.; Tian, F.; Wang, W. X.; Chen, J.; Wu, M.; Zhao, J. X. J. Mater. Chem. C 2013, 1, 4676.
[55]
Liu, Z.; Guo, Z.; Zhong, H.; Qin, X.; Wan, M.; Yang, B. Phys. Chem. Chem. Phys. 2013, 15, 2961.
[56]
Wang, Y. B.; Kurunthu, D.; Scott, G. W.; Bardeen, C. J. J. Phys. Chem. C 2010, 114, 4153.
[57]
Xie, L. M.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z. F. J. Am. Chem. Soc. 2009, 131, 9890.
[58]
Yue, Z.; Lv, P.; Yue, H.; Gao, Y.; Ma, D.; Wei, W.; Ma, G. Chem. Commun. 2013, 49, 3902.
[59]
Zhao, H.; Ding, R. H.; Zhao, X.; Li, Y. W.; Qu, L. L.; Pei, H.; Yildirimer, L.; Wu, Z. W.; Zhang, W. X. Drug Disc. Today 2017, 22, 1302.
[60]
Mei, Q. S.; Zhang, Z. P. Angew. Chem. Int. Ed. 2012, 51, 5602.
[61]
More, M. P.; Deshmukh, P. K. Nanotechnology 2020, 31, 432001.
[62]
Kempaiah, R.; Chung, A.; Maheshwari, V. ACS Nano 2011, 5, 6025.
[63]
Jiang, W. J.; Mo, F.; Jin, X.; Chen, L.; Xu, L. J.; Guo, L. Q.; Fu, F. F. Adv. Mater. Interf. 2017, 4, 1700425.
[64]
Hou, L.; Yan, Y. S.; Tian, C. Y.; Huang, Q. X.; Fu, X. J.; Zhang, Z.; Zhang, H. L.; Zhang, H. J.; Zhang, Z. Z. J. Control. Release 2020, 319, 438.
[65]
Shi, X.; Gong, H.; Li, Y.; Wang, C.; Cheng, L.; Liu, Z. Biomaterials 2013, 34, 4786.
[66]
Ding, H.; Zhang, F.; Zhao, C. C.; Lv, Y. L.; Ma, G. H.; Wei, W.; Tian, Z. Y. ACS Appl. Mater. Inter. 2017, 9, 27396.
Outlines

/