Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (10): 1244-1256.DOI: 10.6023/A21050238 Previous Articles Next Articles
Review
投稿日期:
2021-06-03
发布日期:
2021-08-09
通讯作者:
马光辉
作者简介:
岳华, 中国科学院过程工程研究所青年研究员. 2012年获中国科学院过程工程研究所博士学位, 研究方向聚焦于纳微粒子生物医药新剂型的理论探索和应用研究. 目前发表SCI论文45篇, 以第一/通讯作者在Nat. Commun.、Sci. Adv.、Adv. Drug Deliver. Rev.等权威期刊发表论文15篇(两篇论文他引超100次), 授权专利4项, 参编书籍2部. 对石墨烯生物学效应的研究工作被评价为“最系统的研究之一”. 被优选为中国科学院青年创新促进会会员, 担任第一届中日颗粒论坛、天然与仿生颗粒论坛学术秘书等. 获中国颗粒学会自然科学奖一等奖(R06)等省部级奖2项. |
马光辉, 中国科学院过程工程研究所研究员. 国家杰出青年基金(2001)获得者, 1993年在日本东京农工大学获得工学博士学位, 现任生化工程国家重点实验室主任. 主要研究方向为均一生物微球和微囊的制备及其在生化工程中的应用, 研究和开发用于生化分离、药物载体、免疫佐剂(疫苗递送系统)、细胞培养微载体、酶固定化载体等创新产品. 在Nat. Mater.、Nat. Bio. Eng.、Sci. Adv.、Nat. Commun.、Acc. Chem. Res.、JACS、Adv. Mater.等国际著名学术期刊上发表SCI论文431篇, ESI高被引9篇, 总他引超过10000次. 获中国发明专利授权 80余件、美国等国外专利授权12件, 专利技术和产品在国内外500多家单位得到应用. 获国家技术发明二等奖, 北京市科学技术一等奖, 第三世界青年女研究者奖, 中国化工学会基础研究成果一等奖等省部级一等奖多项. |
基金资助:
Received:
2021-06-03
Published:
2021-08-09
Contact:
Guanghui Ma
Supported by:
Share
Hua Yue, Guanghui Ma. Advances in Functionalized Carriers Based on Graphene's Unique Biological Interface Effect[J]. Acta Chimica Sinica, 2021, 79(10): 1244-1256.
[1] |
Geim, A. K. Science 2009, 324, 1530.
doi: 10.1126/science.1158877 pmid: 19541989 |
[2] |
Janegitz, B. C.; Silva, T. A.; Wong, A.; Ribovski, L.; Vicentini, F. C.; Sotomayor, M. D. T.; Fatibello, O. Biosens. Bioelectron. 2017, 89, 224.
doi: S0956-5663(16)30216-0 pmid: 27005454 |
[3] |
Kuok, F. H.; Liao, C. Y.; Wan, T. H.; Yeh, P. W.; Cheng, I. C.; Chen, J. Z. J. Alloys Compd. 2017, 692, 558.
doi: 10.1016/j.jallcom.2016.09.056 |
[4] |
Sun, C. B.; Liu, Y. Q.; Sheng, J. Z.; Huang, Q. K.; Lv, W.; Zhou, G. M.; Cheng, H. M. Mater. Horiz. 2020, 7, 2487.
doi: 10.1039/D0MH00815J |
[5] |
Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523.
doi: 10.1038/nature02311 |
[6] |
Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y. C.; Chen, H. A.; Chen, I. S.; Chen, L. C.; Chen, K. H.; Nemoto, T.; Isoda, S.; Chen, M. W.; Fujita, T.; Eda, G.; Yamaguchi, H.; Chhowalla, M.; Chen, C. W. Angew. Chem. Int. Ed. 2012, 51, 6662.
doi: 10.1002/anie.201200474 |
[7] |
Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Adv. Mater. 2016, 28, 6052.
doi: 10.1002/adma.v28.29 |
[8] |
Qian, J.; Wang, D.; Cai, F. H.; Xi, W.; Peng, L.; Zhu, Z. F.; He, H.; Hu, M. L.; He, S. L. Angew. Chem. Int. Ed. 2012, 51, 10570.
doi: 10.1002/anie.201206107 |
[9] |
Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 6825.
doi: 10.1021/ja2010175 pmid: 21476500 |
[10] |
Chen, D.; Feng, H. B.; Li, J. H. Chem. Rev. 2012, 112, 6027.
doi: 10.1021/cr300115g pmid: 22889102 |
[11] |
Zhao, K. L.; Hao, Y. G.; Zhu, M.; Cheng, G. S. Acta Chim. Sinica 2018, 76, 168. (in Chinese)
doi: 10.6023/A17110499 |
(赵克丽, 郝莹, 朱墨, 程国胜, 化学学报, 2018, 76, 168.)
doi: 10.6023/A17110499 |
|
[12] |
Bullock, C. J.; Bussy, C. Adv. Mater. Interf. 2019, 6, 1900229.
|
[13] |
Daneshmandi, L.; Barajaa, M.; Rad, A. T.; Sydlik, S. A.; Laurencin, C. T. Adv. Healthc. Mater. 2020, 2001414.
|
[14] |
Yue, H.; Wei, W.; Yue, Z.; Wang, B.; Luo, N.; Gao, Y.; Ma, D.; Ma, G.; Su, Z. Biomaterials 2012, 33, 4013.
doi: 10.1016/j.biomaterials.2012.02.021 |
[15] |
Zhang, W. D.; Yan, L.; Li, M.; Zhao, R. S.; Yang, X.; Ji, T. J.; Gu, Z. J.; Yin, J. J.; Gao, X. F.; Nie, G. J. Toxicol. Lett. 2015, 237, 61.
doi: 10.1016/j.toxlet.2015.05.021 |
[16] |
Liao, K. H.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. ACS Appl. Mater. Inter. 2011, 3, 2607.
doi: 10.1021/am200428v |
[17] |
Liu, J.; Zhang, D. D.; Lian, S.; Zheng, J. X.; Li, B. F.; Li, T.; Jia, L. Int. J. Nanomed. 2018, 13, 7457.
doi: 10.2147/IJN |
[18] |
Hu, W. B.; Peng, C.; Lv, M.; Li, X. M.; Zhang, Y. J.; Chen, N.; Fan, C. H.; Huang, Q. ACS Nano 2011, 5, 3693.
doi: 10.1021/nn200021j |
[19] |
Yang, K.; Wan, J. M.; Zhang, S.; Tian, B.; Zhang, Y. J.; Liu, Z. Biomaterials 2012, 33, 2206.
doi: 10.1016/j.biomaterials.2011.11.064 pmid: 22169821 |
[20] |
Ding, Z.; Luo, N.; Yue, H.; Gao, Y.; Ma, G.; Wei, W. J. Mater. Chem. B 2020, 8, 6845.
doi: 10.1039/D0TB00499E |
[21] |
Yue, H.; Ma, G. H. Acta Polym. Sin. 2020, 51, 125. (in Chinese)
|
(岳华, 马光辉, 高分子学报, 2020, 51, 125.)
|
|
[22] |
Ma, G. H.; Yue, H. Chin. J. Chem. 2020, 38, 911.
doi: 10.1002/cjoc.v38.9 |
[23] |
Yue, H.; Wei, W.; Yue, Z.; Lv, P.; Wang, L.; Ma, G.; Su, Z. Eur. J. Pharm. Sci. 2010, 41, 650.
doi: 10.1016/j.ejps.2010.09.006 |
[24] |
Chen, P.; Yue, H.; Zhai, X.; Huang, Z.; Ma, G. H.; Wei, W.; Yan, L. T. Sci. Adv. 2019, 5, eaaw3192.
doi: 10.1126/sciadv.aaw3192 |
[25] |
Chen, G. Y.; Yang, H. J.; Lu, C. H.; Chao, Y. C.; Hwang, S. M.; Chen, C. L.; Lo, K. W.; Sung, L. Y.; Luo, W. Y.; Tuan, H. Y.; Hu, Y. C. Biomaterials 2012, 33, 6559.
doi: 10.1016/j.biomaterials.2012.05.064 |
[26] |
Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R. P.; Zuo, Y. Y.; Xia, T.; Liu, S. ACS Nano 2015, 9, 10498.
doi: 10.1021/acsnano.5b04751 |
[27] |
Wu, S. Y.; An, S. S. A.; Hulme, J. Int. J. Nanomed. 2015, 10, 9.
|
[28] |
Hao, B. J.; Song, T.; Huang, X. Y.; Ye, M.; Qian, W. H. Chin. J. Org. Chem. 2020, 40, 3279. (in Chinese)
doi: 10.6023/cjoc202004022 |
(郝冰洁, 宋涛, 黄晓宇, 叶茂, 钱文昊, 有机化学, 2020, 40, 3279.)
doi: 10.6023/cjoc202004022 |
|
[29] |
Ma, M. H.; Xu, M.; Liu, S. J. Acta Chim. Sinica 2020, 78, 877. (in Chinese)
doi: 10.6023/A20060216 |
(马明昊, 徐明, 刘思金, 化学学报, 2020, 78, 877.)
doi: 10.6023/A20060216 |
|
[30] |
Luo, N.; Ni, D.; Yue, H.; Wei, W.; Ma, G. ACS Appl. Mater. Inter. 2015, 7, 5239.
doi: 10.1021/am5084607 |
[31] |
Luo, N.; Weber, J. K.; Wang, S.; Luan, B.; Yue, H.; Xi, X.; Du, J.; Yang, Z.; Wei, W.; Zhou, R.; Ma, G. Nat. Commun. 2017, 8, 14537.
doi: 10.1038/ncomms14537 |
[32] |
Ding, Z. W. Ph.D. Dissertation, University of Chinese Academy of Sciences, Beijing, 2020. (in Chinese)
|
(丁昭文, 博士论文, 中国科学院大学, 北京, 2020.)
|
|
[33] |
Sun, X. T.; Feng, Z. W.; Hou, T. J.; Li, Y. Y. ACS Appl. Mater. Inter. 2014, 6, 7153.
doi: 10.1021/am500167c |
[34] |
Zuo, G.; Zhou, X.; Huang, Q.; Fang, H. P.; Zhou, R. H. J. Phys. Chem. C 2011, 115, 23323.
doi: 10.1021/jp208967t |
[35] |
Yue, H.; Wei, W.; Gu, Z.; Ni, D.; Luo, N.; Yang, Z.; Zhao, L.; Garate, J. A.; Zhou, R.; Su, Z.; Ma, G. Nanoscale 2015, 7, 19949.
doi: 10.1039/C5NR04986E |
[36] |
Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P.; Zhou, R. H. Nat. Nanotech. 2013, 8, 594.
doi: 10.1038/nnano.2013.125 |
[37] |
Duan, G. X.; Kang, S. G.; Tian, X.; Garate, J. A.; Zhao, L.; Ge, C. C.; Zhou, R. H. Nanoscale 2015, 7, 15214.
doi: 10.1039/C5NR01839K |
[38] |
Zhang, X.; Ding, Z.; Ma, G.; Wei, W. Adv. Sci. 2021, 8, 2004506.
doi: 10.1002/advs.v8.11 |
[39] |
Chen, S. H.; Perez-Aguilar, J. M.; Zhou, R. H. Nanoscale 2020, 12, 7939.
doi: 10.1039/C9NR10469K |
[40] |
Mao, J.; Guo, R.; Yan, L. T. Biomaterials 2014, 35, 6069.
doi: 10.1016/j.biomaterials.2014.03.087 |
[41] |
Yan, L. T.; Yu, X. Nanoscale 2011, 3, 3812.
doi: 10.1039/c1nr10446b |
[42] |
Shen, H.; Zhang, L. M.; Liu, M.; Zhang, Z. J. Theranostics 2012, 2, 283.
doi: 10.7150/thno.3642 pmid: 22448195 |
[43] |
Feng, L. Z.; Liu, Z. A. Nanomedicine 2011, 6, 317.
doi: 10.2217/nnm.10.158 |
[44] |
Nasrollahzadeh, M.; Babaei, F.; Fakhri, P.; Jaleh, B. RSC Adv. 2015, 5, 10782.
doi: 10.1039/C4RA12552E |
[45] |
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Nat. Commun. 2018, 9, 1410
doi: 10.1038/s41467-018-03705-y pmid: 29650952 |
[46] |
Kim, H.; Namgung, R.; Singha, K.; Oh, I. K.; Kim, W. J. Bioconjug. Chem. 2011, 22, 2558.
doi: 10.1021/bc200397j |
[47] |
Cao, W.; He, L.; Cao, W.; Huang, X.; Jia, K.; Dai, J. Acta Biomater. 2020, 112, 14.
doi: 10.1016/j.actbio.2020.06.009 |
[48] |
Sinha, A.; Cha, B. G.; Choi, Y. J.; Nguyen, T. L.; Yoo, P. J.; Jeong, J. H.; Kim, J. Chem. Mater. 2017, 29, 6883.
doi: 10.1021/acs.chemmater.7b02197 |
[49] |
Cao, Y. H.; Ma, Y. F.; Zhang, M. X.; Wang, H. M.; Tu, X. L.; Shen, H.; Dai, J. W.; Guo, H. C.; Zhang, Z. J. Adv. Funct. Mater. 2014, 24, 6963.
doi: 10.1002/adfm.201401358 |
[50] |
Meng, C.; Zhi, X.; Li, C.; Li, C.; Chen, Z.; Qiu, X.; Ding, C.; Ma, L.; Lu, H.; Chen, D.; Liu, G.; Cui, D. ACS Nano 2016, 10, 2203.
doi: 10.1021/acsnano.5b06750 |
[51] |
Xu, L. G.; Xiang, J.; Liu, Y.; Xu, J.; Luo, Y. C.; Feng, L. Z.; Liu, Z.; Peng, R. Nanoscale 2016, 8, 3785.
doi: 10.1039/C5NR09208F |
[52] |
Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H. N.; Wei, H. T.; Zhang, H.; Sun, H. C.; Yang, B. Chem. Commun. 2011, 47, 6858.
doi: 10.1039/c1cc11122a |
[53] |
Wan, J. X.; Chen, X. Y.; Wang, C.; Fang, X. H. J. Func. Mater. 2017, 48, 8024. (in Chinese)
|
(万吉祥, 陈小源, 王聪, 方小红, 2017, 48, 8024.)
|
|
[54] |
Wu, X.; Tian, F.; Wang, W. X.; Chen, J.; Wu, M.; Zhao, J. X. J. Mater. Chem. C 2013, 1, 4676.
doi: 10.1039/c3tc30820k |
[55] |
Liu, Z.; Guo, Z.; Zhong, H.; Qin, X.; Wan, M.; Yang, B. Phys. Chem. Chem. Phys. 2013, 15, 2961.
doi: 10.1039/c2cp43715e |
[56] |
Wang, Y. B.; Kurunthu, D.; Scott, G. W.; Bardeen, C. J. J. Phys. Chem. C 2010, 114, 4153.
doi: 10.1021/jp9097793 |
[57] |
Xie, L. M.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z. F. J. Am. Chem. Soc. 2009, 131, 9890.
doi: 10.1021/ja9037593 |
[58] |
Yue, Z.; Lv, P.; Yue, H.; Gao, Y.; Ma, D.; Wei, W.; Ma, G. Chem. Commun. 2013, 49, 3902.
doi: 10.1039/c3cc40499d |
[59] |
Zhao, H.; Ding, R. H.; Zhao, X.; Li, Y. W.; Qu, L. L.; Pei, H.; Yildirimer, L.; Wu, Z. W.; Zhang, W. X. Drug Disc. Today 2017, 22, 1302.
doi: 10.1016/j.drudis.2017.04.002 |
[60] |
Mei, Q. S.; Zhang, Z. P. Angew. Chem. Int. Ed. 2012, 51, 5602.
doi: 10.1002/anie.201201389 |
[61] |
More, M. P.; Deshmukh, P. K. Nanotechnology 2020, 31, 432001.
doi: 10.1088/1361-6528/ab996e |
[62] |
Kempaiah, R.; Chung, A.; Maheshwari, V. ACS Nano 2011, 5, 6025.
doi: 10.1021/nn201791k |
[63] |
Jiang, W. J.; Mo, F.; Jin, X.; Chen, L.; Xu, L. J.; Guo, L. Q.; Fu, F. F. Adv. Mater. Interf. 2017, 4, 1700425.
doi: 10.1002/admi.201700425 |
[64] |
Hou, L.; Yan, Y. S.; Tian, C. Y.; Huang, Q. X.; Fu, X. J.; Zhang, Z.; Zhang, H. L.; Zhang, H. J.; Zhang, Z. Z. J. Control. Release 2020, 319, 438.
doi: 10.1016/j.jconrel.2020.01.014 |
[65] |
Shi, X.; Gong, H.; Li, Y.; Wang, C.; Cheng, L.; Liu, Z. Biomaterials 2013, 34, 4786.
doi: 10.1016/j.biomaterials.2013.03.023 |
[66] |
Ding, H.; Zhang, F.; Zhao, C. C.; Lv, Y. L.; Ma, G. H.; Wei, W.; Tian, Z. Y. ACS Appl. Mater. Inter. 2017, 9, 27396.
doi: 10.1021/acsami.7b08824 |
[1] | Congcong Ning, Qian Yang, Amin Mao, Zijia Tang, Yan Jin, Baoshan Hu. Research Progress in Controllable Preparation of Graphene Nanoribbons [J]. Acta Chimica Sinica, 2023, 81(4): 406-419. |
[2] | Wen Liu, Yujie Wang, Huiqin Yang, Chengjie Li, Na Wu, Yang Yan. The Preparation of Carbon Nanotubes/Reduced Graphene Oxide Current Collector by Non-covalent Induction of Ionic Liquid for Sodium Metal Anode [J]. Acta Chimica Sinica, 2023, 81(10): 1379-1386. |
[3] | Shaobing Yan, Long Jiao, Chuanxin He, Hailong Jiang. Pyrolysis of ZIF-67/Graphene Composite to Co Nanoparticles Confined in N-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction [J]. Acta Chimica Sinica, 2022, 80(8): 1084-1090. |
[4] | Zhiliang Gao, Mengqi Li, Jingcheng Hao, Jiwei Cui. Tuning the Mechanical Properties of Colloid Particles for Drug Delivery [J]. Acta Chimica Sinica, 2022, 80(7): 1010-1020. |
[5] | Ruomei Liu, Yanhui Feng, Zhuo Li, Shan Lu, Tianyong Guan, Xingjun Li, Yan Liu, Zhuo Chen, Xueyuan Chen. A Novel Near-infrared Responsive Lanthanide Upconversion Nanoplatform for Drug Delivery Based on Photocleavage of Cypate※ [J]. Acta Chimica Sinica, 2022, 80(4): 423-427. |
[6] | Xusheng Wang, Xu Yang, Chunhui Chen, Hongfang Li, Yuanbiao Huang, Rong Cao. Graphene Quantum Dots Supported on Fe-based Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction※ [J]. Acta Chimica Sinica, 2022, 80(1): 22-28. |
[7] | Yao Zhai, Guoxiang Xin, Jiaqi Wang, Bangwen Zhang, Jinling Song, Xiaoxu Liu. Microwave-assisted Synthesis of rGO/CeO2 Supercapacitor Electrode Materials with Excellent Electrochemical Properties [J]. Acta Chimica Sinica, 2021, 79(9): 1129-1137. |
[8] | Zheng Cai, Yingwen Zhang, Liping Jiang, Junjie Zhu. The Construction and Application of Mn3O4/DOX@Lip Nano-drug Delivery System Based on Fenton-Like Reaction [J]. Acta Chimica Sinica, 2021, 79(4): 481-489. |
[9] | Chang-An Liu, Shi-Bo Hong, Bei Li. Molecular Dynamics Simulation of the Stability Behavior of Graphene in Glycerol/Urea Solvents in Liquid-Phase Exfoliation [J]. Acta Chimica Sinica, 2021, 79(4): 530-538. |
[10] | Jie Huang, Jiangbo Xi, Wei Chen, Zhengwu Bai. Graphene-derived Materials for Metal-free Carbocatalysis of Organic Reactions [J]. Acta Chimica Sinica, 2021, 79(11): 1360-1371. |
[11] | Ma Minghao, Xu Ming, Liu Sijin. Surface Chemical Modifications of Graphene Oxide and Interaction Mechanisms at the Nano-Bio Interface [J]. Acta Chimica Sinica, 2020, 78(9): 877-887. |
[12] | Zhang Liuwei, Chen Qixian, Wang Jingyun. Advances in Reactive Oxygen Species Responsive Anti-cancer Prodrugs [J]. Acta Chimica Sinica, 2020, 78(7): 642-656. |
[13] | Qi Ye, Ren Shuangsong, Che Ying, Ye Junwei, Ning Guiling. Research Progress of Metal-Organic Frameworks Based Antibacterial Materials [J]. Acta Chimica Sinica, 2020, 78(7): 613-624. |
[14] | Li Haimei, Luo Huajian, Xiao Qi, Yang Liyun, Huang Shan, Liu Yi. Investigations of Interactions and Mechanisms of Chiral Graphene Quantum Dots with DNA [J]. Acta Chimica Sinica, 2020, 78(6): 577-586. |
[15] | Sun Yanhui, Qi Youxiao, Shen You, Jing Cuijie, Chen Xiaoxiao, Wang Xinxing. Preparation of Electrochemical Sensor Based on RGO-Au-ZIF-8 Composite and Its Application in Simultaneous Detection of Lead Ions and Copper Ions [J]. Acta Chimica Sinica, 2020, 78(2): 147-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||