Review

Progress of Application of Ring-Opening Metathesis Polymerization (ROMP) in the Synthesis of Star Polymers

  • Chulu Zhou ,
  • Cuiping Hou ,
  • Wei Chen ,
  • Lijie Wang ,
  • Jianhua Cheng
Expand
  • a Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China
    b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
    c University of Science and Technology of China, Hefei 230026, China
*E-mail: ; Tel.: 0431-85262802; Fax: 0431-85262672

Received date: 2021-10-26

  Online published: 2021-12-21

Supported by

National Natural Science Foundation of China(21971232)

Abstract

Ring-opening metathesis polymerization (ROMP) is a strategy in which monocyclic or polycyclic olefins undergo ring-opening polymerization to form functionalized polymers. ROMP has been recognized as a powerful synthetic strategy for the synthesis of advanced polymeric materials. Recently, star polymers are receiving intense interests in materials science and nanotechnology in both academic and industrial fields due to the unique structure and property. In this review, the applications of ROMP in the synthesis of star polymers are discussed in terms of methods of polymerization, monomers, initiators and crosslinking agents. Moreover, the application fields and prospects of the ROMP synthesized star polymers, and the advantages and limitations of various ROMP methods are also presented. This work aims to promote development of ROMP in the synthesis of star-shaped polymers, provide a new scientific research approach for the synthesis of functionally complicated star-shaped polymers, and contribute to the acceleration of the commercialization of star-shaped polymer materials.

Cite this article

Chulu Zhou , Cuiping Hou , Wei Chen , Lijie Wang , Jianhua Cheng . Progress of Application of Ring-Opening Metathesis Polymerization (ROMP) in the Synthesis of Star Polymers[J]. Acta Chimica Sinica, 2022 , 80(2) : 229 -236 . DOI: 10.6023/A21100479

References

[1]
Sowers, M. A.; McCombs, J. R.; Wang, Y.; Paletta, J. T.; Morton, S. W.; Dreaden, E. C.; Boska, M. D.; Ottaviani, M. F.; Hammond, P. T.; Rajca, A.; Johnson, J. A. Nat. Commun. 2014, 5, 1.
[2]
Sveinbjornsson, B. R.; Weitekamp, R. A.; Miyake, G. M.; Xia, Y.; Atwater, H. A.; Grubbs, R. H. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 14332.
[3]
Forster, S.; Abetz, V.; Muller, A. H. E. Adv. Polym. Sci. 2004, 166, 173.
[4]
Zhang, Z. P.; Gao, Y. P.; Chen, S. F.; Wang, J. B. Chin. J. Org. Chem. 2021, 41, 1888. (in Chinese)
[4]
( 张泽鹏, 郜云鹏, 陈树峰, 王剑波, 有机化学, 2021, 41, 1888.)
[5]
Feng, Y. C.; Jie, S. Y.; Li, B. G. Prog. Chem. 2015, 27, 1074. (in Chinese)
[5]
( 冯雨晨, 介素云, 李伯耿, 化学进展, 2015, 27, 1074.)
[6]
Diallo, A. K.; Annunziata, L.; Fouquay, S.; Michaud, G.; Simon, F.; Carpentier, J. F. Polym. Chem. 2014, 5, 2583.
[7]
Lu, H.; Wang, J.; Lin, Y.; Cheng, J. J. J. Am. Chem. Soc. 2009, 131, 13582.
[8]
Chou, C. M.; Lee, S. L.; Chen, C. H.; Biju, A. T.; Luh, T. Y. J. Am. Chem. Soc. 2009, 131, 12579.
[9]
Li, W. W.; Yu, Y.; Lamson, M.; Silverstein, M. S.; Tilton, R. D.; Matyjaszewski, K. Macromolecules 2012, 45, 9419.
[10]
Wu, W.; Wang, W. G.; Li, J. S. Prog. Polym. Sci. 2015, 46, 55.
[11]
Fan, W.; Li, M.; Hong, C. Y.; Pan, C. Y. Acta Chim. Sinica 2015, 73, 330. (in Chinese)
[11]
( 范溦, 李敏, 洪春雁, 潘才元, 化学学报, 2015, 73, 330.)
[12]
Guan, X. L.; Li, Z. F.; W, L.; Liu, M. N.; W, K. l.; Yang, X. Q.; Li, Y. L.; Hu, L. L.; Zhao, X. L.; Lai, S. J.; Lei, Z. Q. Acta Chim. Sinica 2019, 77, 1268. (in Chinese)
[12]
( 关晓琳, 李志飞, 王林, 刘美娜, 王凯龙, 杨学琴, 李亚丽, 胡丽丽, 赵小龙, 来守军, 雷自强, 化学学报, 2019, 77, 1268.)
[13]
Park, J.; Jang, S.; Kon Kim, J. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1.
[14]
Matyjaszewski, K.; Möller, M. In Polymer Science: A Comprehensive Reference, Vol. 6, Eds.: Hadjichristidis, N.; Pitsikalis, M.; Iatrou, H.; Driva, P.; Sakellariou, G.; Chatzichristidi, M.; Athens, 2012, pp. 29-111.
[15]
Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Xu, J. T.; An, Z. S.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G. Chem. Rev. 2016, 116, 6743.
[16]
Saunders, R. S.; Cohen, R. E.; Wong, S. J.; Schrock, R. R. Macromolecules 1992, 25, 2055.
[17]
Otani, H.; Fujita, S.; Watanabe, Y.; Fujiki, M.; Nomura K. Macromol Symp. 2010, 293, 53.
[18]
Sun, Z. L.; Morishita, K.; Nomura, K. Catalysts 2018, 8, 670.
[19]
Sun, Z. L.; Unruean, P.; Aoki, H.; Kitiyanan, B.; Nomura, K. Organometallics 2020, 39, 2998.
[20]
Nomura, K.; Tanaka, K.; Fujita, S. Organometallics 2012, 31, 5074.
[21]
Takamizu, K.; Nomura, K. J. Am. Chem. Soc. 2012, 134, 7892.
[22]
Sun, Z. L.; Nomura, K. RSC Adv. 2018, 8, 27703.
[23]
Nomura, K.; Watanabe, Y.; Fujita, S.; Fujiki, M.; Otani, H. Macromolecules 2009, 42, 899.
[24]
Teo, Y. C.; Lai, H. W. H.; Xia, Y. Polym. Chem. 2020, 11, 265.
[25]
Learsch, R.; Miyake, G. M. J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 732.
[26]
Kalow, J. A.; Swager, T. M. ACS Macro. Lett. 2015, 4, 1229.
[27]
Connor, E. F.; Sundberg, L. K.; Kim, H. C.; Cornelissen, J. J.; Magbitang, T.; Rice, P. M.; Lee, V. Y.; Hawker, C. J.; Volksen, W.; Hedrick, J. L.; Miller, R. D. Angew. Chem. Int. Ed. 2003, 42, 3785.
[28]
Zhao, Y. M.; Zhu, W.; Wu, Y.; Qu, L.; Liu, Z. P.; Zhang, K. Polym. Chem. 2016, 7, 6513.
[29]
Liu, J.; Burts, A. O.; Li, Y. G.; Zhukhovitskiy, A. V.; Ottaviani, M. F.; Turro, N. J.; Johnson, J. A. J. Am. Chem. Soc. 2012, 134, 16337.
[30]
Burts, A. O.; Gao, A. X.; Johnson, J. A. Macro. Rapid Commun. 2014, 35, 168.
[31]
Burts, A. O.; Liao, L. Y.; Lu, Y. Y.; Tirrell, D. A.; Johnson, J. A. Photochem. Photobiol. 2014, 90, 380.
[32]
Gao, A. X.; Liao, L. Y.; Johnson, J. A. ACS Macro. Lett. 2014, 3, 854.
[33]
Barnes, J. C.; Bruno, P. M.; Nguyen, H. V. T.; Liao, L.; Liu, J.; Hemann, M. T.; Johnson, J. A. J. Am. Chem. Soc. 2016, 138, 12494.
[34]
Shieh, P.; Nguyen, H. V. T.; Johnson, J. A. Nat. Chem. 2019, 11, 1124.
[35]
Nguyen, H. T.; Oldenhuis, N. J.; Grundler, J.; Park, E. J.; Johnson, J. A. Macromolecules 2018, 51, 9861.
[36]
Nguyen, H. V. T.; Detappe, A.; Gallagher, N. M.; Zhang, H.; Harvey, P.; Yan, C.; Mathieu, C.; Golder, M. R.; Jiang, Y.; Ottaviani, M. F.; Jasanoff, A.; Rajca, A.; Ghobrial, I. M.; Ghoroghchian, P. P.; Johnson, J. A. ACS Nano 2018, 12, 11343.
[37]
Shibuya, Y.; Tatara, R.; Jiang, Y.; Shao-Horn, Y.; Johnson, J. A. J. Polym. Sci. Pol. Chem. 2019, 57, 448.
[38]
Shibuya, Y.; Nguyen, H. V. T.; Johnson, J. A. ACS Macro. Lett. 2017, 6, 963.
[39]
Alvaradejo, G. G.; Nguyen, H. V. T.; Harvey, P.; Gallagher, N. M.; Le, D.; Ottaviani, M. F.; Jasanoff, A.; Delaittre, G.; Johnson, J. A. ACS Macro. Lett. 2019, 8, 473.
[40]
Beerens, H.; Verpoort, F.; Verdonck, L. J. Mol. Catal. A: Chem 2000, 151, 279.
[41]
Beerens, H.; Verpoort, F.; Verdonck, L. J. Mol. Catal. A: Chem 2000, 190, 1.
[42]
Gatard, S.; Nlate, S.; Cloutet, E.; Bravic, G.; Blais, J. C.; Astruc, D. Angew. Chem. Int. Ed. 2003, 42, 452.
[43]
Kim, K. O.; Shin, S.; Kim, J.; Choi, T. L. Macromolecules 2014, 47, 1351.
[44]
Zhou, C. L.; Hou, C. P.; Cheng, J. H. Polym. Chem. 2020, 11, 1735.
[45]
Zhou, C. L.; Hou, C. P.; Cheng, J. H. Polymer 2021, 229, 123951.
[46]
Hou, C. P.; Zhou, C. L.; Cheng, J. H. Polym. Chem. 2021, 12, 2651.
[47]
Li, R.; Li, X.; Zhang, Y.; Delawder, A. O.; Colley, N. D.; Whiting, E. A.; Barnes, J. C. Polym. Chem. 2020, 11, 541.
[48]
Bang, A.; Buback, C.; Sotiriou-Leventis, C.; Leventis, N. Chem. Mater. 2014, 26, 6979.
[49]
Fu, G. R.; He, Y. N.; Li, B. N.; Liu, L.; Li, W. T.; Zhang, Z.; Lv, X. Q. J. Mater. Chem. C 2018, 6, 8950.
[50]
Liu, J. W.; Li, J. X.; Xie, M. R.; Ding, L.; Yang, D.; Zhang, L. Y. Polymer 2009, 50, 5228.
[51]
Ma, J.; Cheng, C.; Wooley, K. L. Aust. J. Chem. 2009, 62, 1507.
[52]
Levi, A. E.; Fu, L. B.; Lequieu, J.; Horne, J. D.; Blankenship, J.; Mukherjee, S.; Zhang, T. Q.; Fredrickson, G. H.; Gutekunst, W. R.; Bates, C. M. Macromolecules 2020, 53, 702.
[53]
Levi, A. E.; Lequieu, J.; Horne, J. D.; Bates, M. W.; Ren, J. M.; Delaney, K. T.; Fredrickson, G. H.; Bates, C. M. Macromolecules 2019, 52, 1794.
[54]
Li, W. H. Acta Chim. Sinica 2021, 79, 133. (in Chinese)
[54]
( 李卫华, 化学学报, 2021, 79, 133.)
[55]
Wang, Q.; Huang, J.; Jiang, Z. Q.; Zhou, L.; Liu, N.; Wu, Z. Q. Polymer 2018, 136, 92.
[56]
Wang, Q.; Chu, B. F.; Chu, J. H.; Liu, N.; Wu, Z. Q. ACS Macro. Lett. 2018, 7, 127.
[57]
Dag, A.; Durmaz, H.; Sirkecioglu, O.; Hizal, G.; Tunca, U. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2344.
[58]
Gozgen, A.; Dag, A.; Durmaz, H.; Sirkecioglu, O.; Hizal, G.; Tunca, U. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 497.
[59]
Qiu, J.; Zhang, J. W.; Yu, F. L.; Wei, J.; Ding, L. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 692.
Outlines

/