Review

Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations

  • Chong Li ,
  • Na Li ,
  • Limei Chang ,
  • Zhigang Gu ,
  • Jian Zhang
Expand
  • a Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108
    b Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
These authors contributed equally to this work
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-05

  Online published: 2022-01-12

Supported by

National Natural Science Foundation of China(21872148); Youth Innovation Promotion Association, CAS(2018339); Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(2021ZR131)

Abstract

The development of high-efficiency, green and energy-saving material separation and purification technology is of great significance, and gas separation has a wide range of applications in the fields of industry, energy, medical treatment and technology. Since traditional polymer membranes still face many challenges in achieving high-efficient gas separation, the development of new separation membrane materials has become the current hotspot and difficult issue. As an emerging porous coordination polymer, metal-organic frameworks (MOFs) materials have attracted great attention due to their unique, designable topological structures and tunable functionalities. In order to overcome the problem that bulk or powder MOFs are difficult to be used for gas separation efficiently, it is of great significance and a challenging task to develop MOFs membranes for separation. As a representative MOF material, MOF HKUST-1 is widely used to prepare membranes for gas separation due to its advantages of high stability, economic raw material and hierarchical pore structure. The preparation methods and gas separation performances of the HKUST-1 membrane in the past ten years are summarized, and some viewpoints and the research prospect on this research area are described.

Cite this article

Chong Li , Na Li , Limei Chang , Zhigang Gu , Jian Zhang . Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations[J]. Acta Chimica Sinica, 2022 , 80(3) : 340 -358 . DOI: 10.6023/A21120545

References

[1]
Henis, J. M. S. Commercial and Practical Aspects of Gas Separation Membranes, Chap. 10, Eds.: Paul, D. R.; Yampol'skii, Y. P. CRC Press, Boca Raton, Florida, 1994, p. 72.
[2]
Baker, R. W. Ind. Eng. Chem. Res. 2002, 41, 1393.
[3]
Yao, J.; Wang, H. Chem. Soc. Rev. 2014, 43, 4470.
[4]
Norwell, M. Handbook of Compressed Gases, Kluwer Academic Publishers, New York, 1999, pp. 7-9.
[5]
Ruthven, D. M.; Shamsuzzaman, F.; Knaebel, K. S. Pressure Swing Adsorption, VCH Publishers, Inc., Florida, 1993, pp. 1-7.
[6]
Hedin, N.; Andersson, L.; Bergström, L.; Yan, J. Appl. Energy 2013, 104, 418.
[7]
Aaron, D.; Tsouris, C. Sep. Sci. Technol. 2011, 40, 321.
[8]
Baker, R. W.; Lokhandwala, K. Ind. Eng. Chem. Res. 2008, 47, 2109.
[9]
Baker, R. W. Membrane Technology and Applications, John Wiley and Sons Ltd, California, 2012, pp. 325-326.
[10]
Perez, E. V.; Karunaweera, C.; Musselman, I. H.; Balkus, K. J. Jr.; Ferraris, J. P. Processes 2016, 4, 1.
[11]
Tian, Y.; Liang, J.; Shen, Q.; Wang, Z.; Jin, J. Membr. Sci. Technol. 2019, 39, 125.
[12]
Wu, C. H.; Zhang, K. X.; Wang, H. L.; Fan, Y. Q.; Zhang, S. W.; He, S. F.; Wang, F.; Tao, Y.; Zhao, X. W.; Zhang, Y. B.; Ma, Y. H.; Lee, Y. J.; Li, T. J. Am. Chem. Soc. 2020, 142, 18503.
[13]
Baker, R. W.; Low, B. T. Macromolecules 2014, 47, 6999.
[14]
Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Nano Res. 2021, 14, 1.
[15]
Liu, Y.; Ban, Y.; Yang, W. Adv. Mater. 2017, 29, 1606949.
[16]
Robeson, L. M. J. Membr. Sci 1991, 62, 165.
[17]
Robeson, L. M.; Burgoyne, W. F.; Langsam, M.; Savoca, A. C.; Tien, C. F. Polymer 1994, 35, 4970.
[18]
Freeman, B. D. Macromolecules 1999, 32, 375.
[19]
Robeson, L. M. J. Membr. Sci 2008, 320, 390.
[20]
Wang, S.; Tian, Z.; Feng, J.; Wu, H.; Li, Y.; Liu, Y.; Li, X.; Xin, Q.; Jiang, Z. J. Membr. Sci. 2015, 473, 310.
[21]
Zacher, D.; Shekhah, O.; Woll, C.; Fischer, R. A. Chem. Soc. Rev. 2009, 38, 1418.
[22]
Shekhah, O.; Liu, J.; Fischer, R. A.; Woll, C. Chem. Soc. Rev. 2011, 40, 1081.
[23]
Lin, R. B.; Zhang, Z. J.; Chen, B. L. Acc. Chem. Res. 2021, 54, 3362.
[24]
Hosono, N.; Uemura, T. Acc. Chem. Res. 2021, 54, 3593.
[25]
Saraci, F.; Quezada-Novoa, V.; Donnarumma, P. R.; Howarth, A. J. Chem. Soc. Rev. 2020, 49, 7949.
[26]
Feng, L.; Wang, K. Y.; Lv, X. L.; Yan, T. H.; Zhou, H. C. Natl. Sci. Rev. 2020, 7, 1743.
[27]
Zhang, J.; Kosaka, W.; Kitagawa, Y.; Miyasaka, H. Nat. Chem. 2021, 13, 191.
[28]
Xu, M. M.; Chen, Q.; Xie, L. H.; Li, J. R. Coord. Chem. Rev. 2020, 421, 213421.
[29]
Yoo, D. K.; Woo, H. C.; Jhung, S. H. Coord. Chem. Rev. 2020, 422, 213477.
[30]
Yuan, N.; Zhang, X. L.; Wang, L. S. Coord. Chem. Rev. 2020, 421, 213442.
[31]
Cui, Z. M.; Fan, T.; Chen, L. Y.; Fang, R. Q.; Li, C. M.; Li, Y. W. Sci. China. Chem. 2021, 64, 109.
[32]
Feng, L.; Wang, K. Y.; Day, G. S.; Ryder, M. R.; Zhou, H. C. Chem. Rev. 2020, 120, 13087.
[33]
Terzopoulou, A.; Nicholas, J. D.; Chen, X. Z.; Nelson, B. J.; Pane, S.; Puigmarti-Luis, J. Chem. Rev. 2020, 120, 11175.
[34]
Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Chem. Rev. 2020, 120, 12089.
[35]
Zhang, X.; Chen, Z. J.; Liu, X. Y.; Hanna, S. L.; Wang, X. J.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O. K. Chem. Soc. Rev. 2020, 49, 7406.
[36]
Chong, S.; Lee, S.; Kim, B.; Kim, J. Coord. Chem. Rev. 2020, 423, 213487.
[37]
Daglar, H.; Keskin, S. Coord. Chem. Rev. 2020, 422, 213470.
[38]
Hackler, R. A.; Pandharkar, R.; Ferrandon, M. S.; Kim, I. S.; Vermeulen, N. A.; Gallington, L. C.; Chapman, K. W.; Farha, O. K.; Cramer, C. J.; Sauer, J.; Gagliardi, L.; Martinson, A. B. F.; Delferro, M. J. Am. Chem. Soc. 2020, 142, 20380.
[39]
Rowsell, J. L. C.; Yaghi, O. M.; Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S. Angew. Chem., nt. Ed. 2005, 44, 4647.
[40]
Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
[41]
Zhang, Y.; Lv, L. S.; Li, W. J.; Zhang, Y.; Lu, N.; Han, X. J. Chin. Chem. Soc. 2021, 68, 610.
[42]
Aniruddha, R.; Sreedhar, I.; Reddy, B. M. J. CO2 Util 2020, 42, 101297.
[43]
Cui, H.; Ye, Y. X.; Liu, T.; Alothman, Z. A.; Alduhaish, O.; Lin, R. B.; Chen, B. L. Inorg. Chem. 2020, 59, 17143.
[44]
Bernardo, P.; Drioli, E.; Golemme, G. Ind. Eng. Chem. Res. 2009, 48, 4638.
[45]
Ursueguia, D.; Diaz, E.; Vega, A.; Ordonez, S. Sep. Purif. Technol. 2020, 251, 117374.
[46]
Wang, X.; Zhang, F. F.; Li, S. Y.; Chen, Y. S.; Wang, Z.; Hou, X. Y.; Chen, X. L.; Tang, L.; Yue, E. L.; Wang, J. J. J. Solid State Chem. 2020, 292, 121670.
[47]
Li, G.-P.; Li, Z.-Z.; Xie, H.-F.; Fu, Y.-L.; Wang, Y.-Y. Chin. J. Struc. Chem. 2021, 40, 1047. (in Chinese)
[47]
李高鹏, 李贞贞, 谢红芳, 付云龙, 王尧宇, 结构化学, 2021, 40, 1047.)
[48]
Li, X.; Yan, B.; Huang, W.; Fu, L.; Sun, X.; Lv, A. Acta Chim. Sinica 2021, 79, 459.. (in Chinese)
[48]
李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华, 化学学报, 2021, 79, 459.)
[49]
Lyu, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica 2021, 79, 869. (in Chinese)
[49]
(吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
[50]
Wu, X.-L.; Li, Z.-J.; Tang, F.-D.; Qian, N.; Chu, X.-X.; Liu, W. Chin. J. Struc. Chem. 2021, 40, 85. (in Chinese)
[50]
(吴小玲, 李子建, 唐方东, 钱楠, 楚鑫新, 刘卫, 结构化学, 2021, 40, 85.)
[51]
Zhang, H.; Li, G.; Zhang, K.; Liao, C. Acta Chim. Sinica 2017, 75, 841. (in Chinese)
[51]
(张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.)
[52]
Park, Y. K.; Choi, S. B.; Kim, H.; Kim, K.; Won, B.-H.; Choi, K.; Choi, J.-S.; Ahn, W.-S.; Won, N.; Kim, S.; Jung, D. H.; Choi, S.-H.; Kim, G.-H.; Cha, S.-S.; Jhon, Y. H.; Yang, J. K.; Kim, J. Angew. Chem., nt. Ed. 2007, 46, 8230.
[53]
Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M. A.; Sebban, M.; Taulelle, F.; Férey, G. R. J. Am. Chem. Soc. 2008, 130, 6774.
[54]
Férey, G. Chem. Soc. Rev. 2008, 37, 191.
[55]
Serre, C.; Millange, F.; Surblé, S.; Férey, G. Angew. Chem., nt. Ed. 2004, 43, 6285.
[56]
Yang, T.; Cui, Y.; Chen, H.; Li, W. Acta Chim. Sinica 2017, 75, 339. (in Chinese)
[56]
(杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75, 339.)
[57]
Hromadka, J.; Tokay, B.; Correia, R.; Morgan, S. P.; Korposh, S. Sens. Actuators, B 2018, 255, 2483.
[58]
Hu, Z.; Tao, C.-A.; Liu, H.; Zou, X.; Zhu, H.; Wang, J. J. Mater. Chem. A 2014, 2, 14222.
[59]
Szilagyi, P. A.; Westerwaal, R. J.; van de Krol, R.; Geerlings, H.; Dam, B. J. Mater. Chem. C 2013, 1, 8146.
[60]
Liu, J.; Redel, E.; Walheim, S.; Wang, Z.; Oberst, V.; Liu, J.; Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T.; Bruns, M.; Gliemann, H.; Woell, C. Chem. Mater. 2015, 27, 1991.
[61]
Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832.
[62]
Gao, Z.; Wang, C.; Li, J.; Zhu, Y.; Zhang, Z.; Hu, W. Acta Phys.-Chim. Sin. 2020, 37, 2010025. (in Chinese)
[62]
(高增强, 王聪勇, 李俊俊, 朱亚廷, 张志成, 胡文平, 物理化学学报, 2020, 37, 2010025.)
[63]
Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113. (in Chinese)
[63]
(黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
[64]
Schlichte, K.; Kratzke, T.; Kaskel, S. Microporous Mesoporous Mater. 2004, 73, 81.
[65]
Zhao, M.; Deng, K.; He, L.; Liu, Y.; Li, G.; Zhao, H.; Tang, Z. J. Am. Chem. Soc. 2014, 136, 1738.
[66]
Martis, M.; Mori, K.; Fujiwara, K.; Ahn, W.-S.; Yamashita, H. J. Phys. Chem. C 2013, 117, 22805.
[67]
Nguyen, L. T. L.; Le, K. K. A.; Truong, H. X.; Phan, N. T. S. Catal. Sci. Technol. 2012, 2, 521.
[68]
Fei, H.; Cohen, S. M. J. Am. Chem. Soc. 2015, 137, 2191.
[69]
Nasalevich, M. A.; van der Veen, M.; Kapteijn, F.; Gascon, J. CrystEngComm 2014, 16, 4919.
[70]
Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S. M.; Ott, S. J. Am. Chem. Soc. 2013, 135, 16997.
[71]
Nguyen, T. N.; Kampouri, S.; Valizadeh, B.; Luo, W.; Ongari, D.; Planes, O. M.; Zuttel, A.; Smit, B.; Stylianou, K. C. ACS Appl. Mater. Interfaces 2018, 10, 30035.
[72]
Maina, J. W.; Schutz, J. A.; Grundy, L.; Des Ligneris, E.; Yi, Z.; Kong, L.; Pozo-Gonzalo, C.; Ionescu, M.; Dumee, L. F. ACS Appl. Mater. Interfaces 2017, 9, 35010.
[73]
Ohara, H.; Yamamoto, S.; Kuzuhara, D.; Koganezawa, T.; Oikawa, H.; Mitsuishi, M. ACS Appl. Mater. Interfaces 2020, 12, 50784.
[74]
Santos, J. C. C.; Pramudya, Y.; Krstic, M.; Chen, D. H.; Neumeier, B. L.; Feldmann, C.; Wenzel, W.; Redel, E. ACS Appl. Mater. Interfaces 2020, 12, 52166.
[75]
Bo, R. H.; Taheri, M.; Liu, B. R.; Ricco, R.; Chen, H. J.; Amenitsch, H.; Fusco, Z.; Tsuzuki, T.; Yu, G. H.; Ameloot, R.; Falcaro, P.; Tricoli, A. Adv. Sci. 2020, 7, 2002368.
[76]
Liu, Y. X.; Wei, Y. N.; Liu, M. H.; Bai, Y. C.; Wang, X. Y.; Shang, S. C.; Chen, J. Y.; Liu, Y. Q. Angew. Chem., nt. Ed. 2021, 60, 2887.
[77]
Sun, S. J.; Xiao, Y. L.; He, L. Q.; Tong, Y. X.; Liu, D. X.; Zhang, J. Y. ChemistrySelect 2020, 5, 13855.
[78]
Wang, D.-W.; Gu, Z.-G.; Zhang, J. Acta Phys. Sin. 2020, 69, 126801. (in Chinese)
[78]
(王大为, 谷志刚, 张健, 物理学报, 2020, 69, 126801.)
[79]
Shah, M.; McCarthy, M. C.; Sachdeva, S.; Lee, A. K.; Jeong, H.-K. Ind. Eng. Chem. Res. 2012, 51, 2179.
[80]
Kang, Z.; Fan, L.; Sun, D. J. Mater. Chem. A 2017, 5, 10073.
[81]
Shekhah, O.; Chernikova, V.; Belmabkhout, Y.; Eddaoudi, M. Crystals 2018, 8, 412.
[82]
Shi, Y.; Liang, B.; Lin, R.-B.; Zhang, C.; Chen, B. Trends. Chem. 2020, 2, 254.
[83]
Hou, D.; Liu, D.; Yang, Q.; Zhong, C. Chem. Ind. Eng. Prog. 2015, 34, 2907.
[84]
Ma, L.; Svec, F.; Lv, Y.; Tan, T. Chem.-Asian J. 2019, 14, 3502.
[85]
Bi, X. Y.; Zhang, Y. A.; Zhang, F.; Zhang, S. X.; Wang, Z. G.; Jin, J. ACS Appl. Mater. Interfaces 2020, 12, 49101.
[86]
Qiu, S.; Xue, M.; Zhu, G. Chem. Soc. Rev. 2014, 43, 6116.
[87]
Shah, M.; McCarthy, M. C.; Sachdeva, S.; Lee, A. K.; Jeong, H.-K. Ind. Eng. Chem. Res. 2012, 51, 2179.
[88]
Chui, S. S.; Lo, S. M.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148.
[89]
Wehring, M.; Gascon, J.; Dubbeldam, D.; Kapteijn, F.; Snurr, R. Q.; Stallmach, F. J. Phys. Chem. C 2010, 114, 10527.
[90]
Chen, Y.; Mu, X.; Lester, E.; Wu, T. Prog. Nat. Sci.: Mater. Int. 2018, 28, 584.
[91]
Al-Janabi, N.; Hill, P.; Torrente-Murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X. Chem. Eng. J. 2015, 281, 669.
[92]
Raganati, F.; Gargiulo, V.; Ammendola, P.; Alfe, M.; Chirone, R. Chem. Eng. J. 2014, 239, 75.
[93]
Gu, Z.-G.; Heinke, L.; Wöll, C.; Neumann, T.; Wenzel, W.; Li, Q.; Fink, K.; Gordan, O. D.; Zahn, D. R. T. Appl. Phys. Lett. 2015, 107, 183301.
[94]
Anand, B.; Younis, S. A.; Szulejko, J. E.; Kim, K. H.; Zhang, W. J. Cleaner Prod. 2020, 275, 122359.
[95]
Babal, A. S.; Tan, J. C. J. Mater. Chem. C 2020, 8, 12886.
[96]
Lestari, W. W.; Irwinsyah; Saraswati, T. E.; Krisnandi, Y. K.; Arrozi, U. S. F.; Heraldy, E.; Kadja, G. T. M. Open Chem. 2019, 17, 1279.
[97]
Zhang, Y.; Zhang, Y.; Wang, X.; Yu, J.; Din, B. ACS Appl. Mater. Interfaces 2018, 10, 34802.
[98]
Riley, B. J.; Chong, S.; Kuang, W.; Varga, T.; Helal, A. S.; Galanek, M.; Li, J.; Nelson, Z. J.; Thallapally, P. K. ACS Appl. Mater. Interfaces 2020, 12, 45342.
[99]
Ye, S.; Jiang, X.; Ruan, L.-W.; Liu, B.; Wang, Y.-M.; Zhu, J.-F.; Qiu, L.-G. Microporous Mesoporous Mater. 2013, 179, 191.
[100]
Alvarez, J. R.; Sanchez-Gonzalez, E.; Perez, E.; Schneider-Revueltas, E.; Martinez, A.; Tejeda-Cruz, A.; Islas-Jacome, A.; Gonzalez-Zamora, E.; Ibarra, I. A. Dalton Trans. 2017, 46, 9192.
[101]
Di Credico, B.; Redaelli, M.; Bellardita, M.; Calamante, M.; Cepek, C.; Cobani, E.; D'Arienzo, M.; Evangelisti, C.; Marelli, M.; Moret, M.; Palmisano, L.; Scotti, R. Catalysts 2018, 8, 1.
[102]
Chuah, C. Y.; Goh, K.; Bae, T.-H. J. Phys. Chem. C 2017, 121, 6748.
[103]
Xu, F.; Lv, D. F.; Xu, W. C.; Yang, X. X.; Sun, H. L.; Yuan, W. B.; Yan, J.; Chen, X. AIP Adv. 2020, 10, 125311.
[104]
Panella, B.; Hirscher, M.; Pütter, H.; Müller, U. Adv. Funct. Mater. 2006, 16, 520.
[105]
Vishnyakov, A.; Ravikovitch, P. I.; Neimark, A. V.; Bülow, M.; Wang, Q. M. Nano Lett. 2003, 3, 713.
[106]
Gu, Z.-G.; Fu, H.; Neumann, T.; Xu, Z.-X.; Fu, W.-Q.; Wenzel, W.; Zhang, L.; Zhang, J.; Wöll, C. ACS Nano 2015, 10, 977.
[107]
Sun, Y.; Yang, F.; Wei, Q.; Wang, N.; Qin, X.; Zhang, S.; Wang, B.; Nie, Z.; Ji, S.; Yan, H.; Li, J.-R. Adv. Mater. 2016, 28, 2374.
[108]
Gu, Z.-G.; Li, D.-J.; Zheng, C.; Kang, Y.; Wöll, C.; Zhang, J. Angew. Chem., nt. Ed. 2017, 56, 6853.
[109]
Delen, G.; Monai, M.; Meirer, F.; Weckhuysen, B. M. Angew. Chem., nt. Ed. 2021, 60, 1620.
[110]
Lu, C.; Wang, G.; Wang, K.; Guo, D.; Bai, M.; Wang, Y. Materials 2018, 11, 1207.
[111]
Noh, S.-J.; Kwon, H. T.; Kim, J. J. Nanosci. Nanotechnol. 2013, 13, 5671.
[112]
Guo, Y.; Mao, Y.; Hu, P.; Ying, Y.; Peng, X. ChemistrySelect 2016, 1, 108.
[113]
Mao, Y.; Cao, W.; Li, J.; Sun, L.; Peng, X. Chem.-Eur. J. 2013, 19, 11883.
[114]
Nan, J.; Dong, X.; Wang, W.; Jin, W.; Xu, N. Langmuir 2011, 27, 4309.
[115]
Guerrero, V. V.; Yoo, Y.; McCarthy, M. C.; Jeong, H.-K. J. Mater. Chem. 2010, 20, 3938.
[116]
Shah, M. N.; Gonzalez, M. A.; McCarthy, M. C.; Jeong, H.-K. Langmuir 2013, 29, 7896.
[117]
Ranjan, R.; Tsapatsis, M. Chem. Mater. 2009, 21, 4920.
[118]
Zhu, H.; Liu, H.; Zhitomirsky, I.; Zhu, S. Mater. Lett. 2015, 142, 19.
[119]
Zhou, S.; Wei, Y.; Zhuang, L.; Ding, L.-X.; Wang, H. J. Mater. Chem. A 2017, 5, 1948.
[120]
Guo, H.; Zhu, G.; Hewitt, I. J.; Qiu, S. J. Am. Chem. Soc. 2009, 131, 1646.
[121]
Kang, Z.; Wang, S.; Fan, L.; Zhang, M.; Kang, W.; Pang, J.; Du, X.; Guo, H.; Wang, R.; Sun, D. Commun. Chem. 2018, 1, 1.
[122]
Dahanayaka, M.; Babicheva, R.; Chen, Z.; Law, A. W.-K.; Wu, M. S.; Zhou, K. Appl. Surf. Sci. 2020, 503, 144198.
[123]
Zhou, S.; Zou, X.; Sun, F.; Zhang, F.; Fan, S.; Zhao, H.; Schiestel, T.; Zhu, G. J. Mater. Chem. 2012, 22, 10322.
[124]
Mao, Y.; Li, J.; Cao, W.; Ying, Y.; Sun, L.; Peng, X. ACS Appl. Mater. Interfaces 2014, 6, 4473.
[125]
Li, W.; Meng, Q.; Zhang, C.; Zhang, G. Chem.-Eur. J. 2015, 21, 7224.
[126]
Gascon, J.; Aguado, S.; Kapteijn, F. Microporous Mesoporous Mater. 2008, 113, 132.
[127]
Wu, Y.-N.; Li, F.; Liu, H.; Zhu, W.; Teng, M.; Jiang, Y.; Li, W.; Xu, D.; He, D.; Hannam, P.; Li, G. J. Mater. Chem. 2012, 22, 16971.
[128]
Mao, Y.; Shi, L.; Huang, H.; Cao, W.; Li, J.; Sun, L.; Jin, X.; Peng, X. Chem. Commun. 2013, 49, 5666.
[129]
Zhu, H.; Zhang, Q.; Zhu, S. ACS Appl. Mater. Interfaces 2016, 8, 17395.
[130]
Campbell, J.; Szekely, G.; Davies, R. P.; Braddock, D. C.; Livingston, A. G. J. Mater. Chem. A 2014, 2, 9260.
[131]
Fu, J.; Ben, T.; Qiu, S. Acta Phys.-Chim. Sin. 2020, 36, 1901079. (in Chinese)
[131]
(付静茹, 贲腾, 裘式纶, 物理化学学报, 2020, 36, 1901079.)
[132]
Campbell, J.; Burgal, J. D. S.; Szekely, G.; Davies, R. P.; Braddock, D. C.; Livingston, A. J. Membr. Sci. 2016, 503, 166.
[133]
Zhou, S.; Wei, Y.; Zhuang, L.; Ding, L.-X.; Wang, H. J. Mater. Chem. A 2017, 5, 1948.
[134]
Meng, C. F.; Chen, H. T.; Hu, P. F.; Yuan, A. H. ChemistrySelect 2020, 5, 15049.
[135]
Zhao, F.; Su, C. H.; Yang, W. X.; Han, Y.; Luo, X. L.; Li, C. H.; Tang, W. Z.; Yue, T. L.; Li, Z. H. Appl. Surf. Sci. 2020, 527, 146862.
[136]
Yang, K.; Ban, Y. J.; Guo, A.; Zhao, M.; Zhou, Y. W.; Cao, N.; Yang, W. S. J. Membr. Sci. 2020, 611, 118419.
[137]
Chen, K.; Li, P.; Zhang, H. Y.; Sun, H. X.; Yang, X. J.; Yao, D. H.; Pang, X. J.; Han, X. L.; Niu, Q. J. Sep. Purif. Technol. 2020, 251, 117387.
[138]
Shi, Z. L.; Jiao, J. C.; Han, Q. X.; Xiao, Y.; Huang, L. K.; Li, M. X. Mol. Catal. 2020, 496, 111190.
[139]
Sun, S.; Huang, L.; Xiao, H.; Shuai, Q.; Hu, S. Talanta 2019, 202, 145.
[140]
Ben, T.; Lu, C.; Pei, C.; Xu, S.; Qiu, S. Chem.-Eur. J. 2012, 18, 10250.
[141]
Nagaraju, D.; Bhagat, D. G.; Banerjee, R.; Kharul, U. K. J. Mater. Chem. A 2013, 1, 8828.
[142]
Mao, Y.; Su, B.; Cao, W.; Li, J.; Ying, Y.; Ying, W.; Hou, Y.; Sun, L.; Peng, X. ACS Appl. Mater. Interfaces 2014, 6, 15676.
[143]
Hou, J.; Sutrisna, P. D.; Wang, T.; Gao, S.; Li, Q.; Zhou, C.; Sun, S.; Yang, H. C.; Wei, F.; Ruggiero, M. T.; Zeitler, J. A.; Cheetham, A. K.; Liang, K.; Chen, V. ACS Appl. Mater. Interfaces 2019, 11, 5570.
[144]
Venna, S. R.; Carreon, M. A. J. Am. Chem. Soc. 2010, 132, 76.
[145]
Li, T.; Zhang, Z.; Han, Z. J. Inorg. Mater. 2021, 36, 592.
[146]
Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Chem. Soc. Rev. 2015, 44, 7128.
[147]
Wu, X. K.; Yang, Y. W.; Lu, X. F.; Wang, Z. B. J. Membr. Sci. 2020, 613, 118518.
[148]
Yeo, Z. Y.; Chai, S.-P.; Zhu, P. W.; Mohamed, A. R. RSC Adv. 2014, 4, 54322.
[149]
Liu, X.; Yue, T.; Qi, K.; Qiu, Y.; Xia, B. Y.; Guo, X. Chin. Chem. Lett. 2020, 31, 2189.
[150]
Gu, Z.-G.; Bürck, J.; Bihlmeier, A.; Liu, J.; Shekhah, O.; Weidler, P. G.; Azucena, C.; Wang, Z.; Heissler, S.; Gliemann, H.; Klopper, W.; Ulrich, A. S.; Wöll, C. Chem.-Eur. J. 2014, 20, 9879.
[151]
Gu, Z.-G.; Zhang, J. Coord. Chem. Rev. 2019, 378, 513.
[152]
Zhuang, J.-L.; Terfort, A.; Woell, C. Coord. Chem. Rev. 2016, 307, 391.
[153]
Gu, Z. G.; Chen, S. C.; Fu, W. Q.; Zheng, Q. D.; Zhang, J. ACS Appl. Mater. Interfaces 2017, 9, 7259.
[154]
Heinke, L.; Woll, C. Adv. Mater. 2019, 31, 1806324.
[155]
Yamada, T.; Otsubo, K.; Makiura, R.; Kitagawa, H. Chem. Soc. Rev. 2013, 42, 6655.
[156]
Gu, Z.-G.; Fu, W.-Q.; Wu, X.; Zhang, J. Chem. Commun. 2016, 52, 772.
[157]
Ahlenhoff, K.; Koch, S.; Emmrich, D.; Dalpke, R.; Goelzhaeuser, A.; Swiderek, P. Phys. Chem. Chem. Phys. 2019, 21, 2351.
[158]
Begum, S.; Hassan, Z.; Braese, S.; Woell, C.; Tsotsalas, M. Acc. Chem. Res. 2019, 52, 1598.
[159]
Elrasheedy, A.; Nady, N.; Bassyouni, M.; El-Shazly, A. Membranes 2019, 9, 88.
[160]
Li, W. Prog. Mater. Sci. 2019, 100, 21.
[161]
Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van Puyvelde, P.; Van der Bruggen, B. Chem. Soc. Rev. 2019, 48, 2665.
[162]
Chen, D. H.; Sedykh, A. E.; Gomez, G. E.; Neumeier, B. L.; Santos, J. C. C.; Gvilava, V.; Maile, R.; Feldmann, C.; Woll, C.; Janiak, C.; Muller-Buschbaum, K.; Redel, E. Adv. Mater. Interfaces 2020, 7, 2000929.
[163]
Haldar, R.; Jakoby, M.; Kozlowska, M.; Khan, M. R.; Chen, H. Y.; Pramudya, Y.; Richards, B. S.; Heinke, L.; Wenzel, W.; Odobel, F.; Diring, S.; Howard, I. A.; Lemmer, U.; Woll, C. Chem.-Eur. J. 2020, 26, 17016.
[164]
Jiang, X.-T.; Yin, Q.; Liu, T.-F.; Cao, R. Chem. J. Chin. Univ. 2020, 41, 1691.
[165]
Sen, B.; Santos, J. C. C.; Haldar, R.; Zhang, Q.; Hashem, T.; Qin, P.; Li, Y.; Kirschhofer, F.; Brenner-Weiss, G.; Gliemann, H.; Heinke, L.; Barner-Kowollik, C.; Knebel, A.; Woll, C. Nanoscale 2020, 12, 24419.
[166]
Wang, S.; Pomerantz, N. L.; Dai, Z.; Xie, W.; Anderson, E. E.; Miller, T.; Khan, S. A.; Parsons, G. N. Mater. Today Adv. 2020, 8, 100085.
[167]
Zhao, R.; Liao, H.; Wu, X. R.; Cao, X. L. J. Solid State Chem. 2020, 292, 121693.
[168]
Zhu, K.; Fan, R. Q.; Wu, J. K.; Wang, B. W.; Lu, H. Y.; Zheng, X. B.; Sun, T. C.; Gai, S.; Zhou, X. S.; Yang, Y. L. ACS Appl. Mater. Interfaces 2020, 12, 58239.
[169]
Haldar, R.; Woell, C. Nano Res. 2021, 14, 355.
[170]
Jiang, T.; Sun, X. X.; Wei, L. L.; Li, M. G. Anal. Bioanal. Chem. 2021, 413, 565.
[171]
Hurrle, S.; Friebe, S.; Wohlgemuth, J.; Woell, C.; Caro, J.; Heinke, L. Chem.-Eur. J. 2017, 23, 2294.
[172]
Han, S.; Ciufo, R. A.; Meyerson, M. L.; Keitz, B. K.; Mullins, C. B. J. Mater. Chem. A 2019, 7, 19396.
[173]
Usman, M.; Ali, M.; Al-Maythalony, B. A.; Ghanem, A. S.; Saadi, O. W.; Ali, M.; Mazumder, M. A. J.; Abdel-Azeim, S.; Habib, M. A.; Yamani, Z. H.; Ensinger, W. ACS Appl. Mater. Interfaces 2020, 12, 49992.
[174]
Chung, T.-S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S. Prog. Polym. Sci. 2007, 32, 483.
[175]
Jeazet, H. B. T.; Staudt, C.; Janiak, C. Dalton Trans. 2012, 41, 14003.
[176]
Quan, K.; Pan, F.; Chen, Z.; Duan, C.; Yuan, B.; Yan, S. Inorg. Chem. Ind. 2021, 53, 1.
[177]
Muthukumaraswamy Rangaraj, V.; Wahab, M. A.; Reddy, K. S. K.; Kakosimos, G.; Abdalla, O.; Favvas, E. P.; Reinalda, D.; Geuzebroek, F.; Abdala, A.; Karanikolos, G. N. Front Chem. 2020, 8, 1.
[178]
Wang, Y. J.; Yang, G.; Guo, H. L.; Meng, X. L.; Kong, G. D.; Kang, Z. X.; Guillet-Nicolas, R.; Mintova, S. J. Membr. Sci. 2022, 643, 11.
[179]
Zornoza, B.; Seoane, B.; Zamaro, J. M.; Tellez, C.; Coronas, J. ChemPhySchem 2011, 12, 2781.
[180]
Chi, W. S.; Sundell, B. J.; Zhang, K.; Harrigan, D. J.; Hayden, S. C.; Smith, Z. P. ChemSusChem 2019, 12, 2355.
[181]
Kathuria, A.; Abiad, M. G.; Auras, R. Polym. Int. 2013, 62, 1144.
[182]
Nuhnen, A.; Klopotowski, M.; Jeazet, H. B. T.; Sorribas, S.; Zornoza, B.; Tellez, C.; Coronas, J.; Janiak, C. Dalton Trans. 2020, 49, 1822.
[183]
Basu, S.; Cano-Odena, A.; Vankelecom, I. F. J. J. Membr. Sci. 2010, 362, 478.
[184]
Duan, C.; Jie, X.; Zhu, H.; Liu, D.; Peng, W.; Cao, Y. J. Appl. Polym. Sci. 2018, 135, 45728.
[185]
Chuah, C. Y.; Li, W.; Samarasinghe, S. A. S. C.; Sethunga, G. S. M. D. P.; Bae, T.-H. Microporous Mesoporous Mater. 2019, 290, 109680.
[186]
Chuah, C. Y.; Samarasinghe, S. A. S. C.; Li, W.; Goh, K.; Bae, T.-H. Membranes 2020, 10, 1.
[187]
Akbari, A.; Karimi-Sabet, J.; Ghoreishi, S. M. Sep. Purif. Technol. 2020, 251, 117317.
[188]
Ockwig, N. W.; Nenoff, T. M. Chem. Rev. 2007, 107, 4078.
[189]
Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; McGrath, J. E.; Paul, D. R.; Freeman, B. D. Polymer 2013, 54, 4729.
[190]
Qian, Q.; Asinger, P. A.; Lee, M. J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F. M.; Wu, A. X.; Chi, W. S.; Smith, Z. P. Chem. Rev. 2020, 120, 8161.
[191]
Yu, C.-H.; Huang, C.-H.; Tan, C.-S. Aerosol Air Qual. Res. 2012, 12, 745.
[192]
Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. RSC Adv. 2013, 3, 14233.
[193]
Shimekit, B.; Mukhtar, H. Advances in Natural Gas Technology, Chapter 9, Ed.: Hamid, A., IntechOpen, Malaysia, 2012, p. 235.
[194]
Xu, H.; Tong, M.-M.; Wu, D.; Xiao, G.; Yang, Q.-Y.; Liu, D.-H.; Zhong, C.-L. Acta Phys.-Chim. Sin. 2015, 31, 41. (in Chinese)
[194]
(许红, 童敏曼, 吴栋, 肖刚, 阳庆元, 刘大欢, 仲崇立, 物理化学学报, 2015, 31, 41.)
[195]
Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.; Baker, R. W.; Freeman, B. D. Macromolecules 2017, 50, 7809.
[196]
Olajire, A. A. Energy 2010, 35, 2610.
[197]
Yu, J.; Xie, L. H.; Li, J. R.; Ma, Y.; Seminario, J. M.; Balbuena, P. B. Chem. Rev. 2017, 117, 9674.
[198]
Mao, Y.; Cao, W.; Li, J.; Liu, Y.; Ying, Y.; Sun, L.; Peng, X. J. Mater. Chem. A 2013, 1, 11711.
[199]
Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 8875.
[200]
The Stern Review on the Economic Effects of Climate Change, Popul. Dev. Rev. 2006, 32, 793.
[201]
Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. In Carbon Dioxide Capture and Storage, The Intergovernmental Panel on Climate Change, Eds.: Bert, M.; Ogunlade, D.; Heleen de C.; Manuela, L.; Leo, M., Cambridge University Press, Cambridge, 2005, pp. 105-171.
[202]
Casado-Coterillo, C.; Fernandez-Barquin, A.; Zornoza, B.; Tellez, C.; Coronas, J.; Irabien, A. RSC Adv. 2015, 5, 102350.
[203]
Casado-Coterillo, C.; Fernandez-Barquin, A.; Irabien, A. Membranes 2020, 10, 10010006.
[204]
Wade, C. R.; Dinca, M. Dalton Trans. 2012, 41, 7931.
[205]
Ge, L.; Wang, L.; Rudolph, V.; Zhu, Z. RSC Adv. 2013, 3, 25360.
[206]
Hu, J.; Liu, J.; Liu, Y.; Yang, X. J. Phys. Chem. C 2016, 120, 10311.
[207]
Cao, Y.; Zhao, Y.; Song, F.; Zhong, Q. J. Energy Chem. 2014, 23, 468.
[208]
Mao, Y.; Chen, D.; Hu, P.; Guo, Y.; Ying, Y.; Ying, W.; Peng, X. Chem.-Eur. J. 2015, 21, 15127.
[209]
Chen, Z.; Liu, J.; Cui, H.; Zhang, L.; Su, C. Acta Chim. Sinica 2019, 77, 242. (in Chinese)
[209]
(陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.)
[210]
Gong, J.-H.; Wang, C.-H.; Bian, Z.-J.; Yang, L.; Hu, J.; Liu, H.-L. Acta Phys-Chim. Sin. 2015, 31, 1963. (in Chinese)
[210]
龚金华, 王臣辉, 卞子君, 阳立, 胡军, 刘洪来, 物理化学学报, 2015, 31, 1963.)
[211]
Cao, F.; Zhang, C.; Xiao, Y.; Huang, H.; Zhang, W.; Liu, D.; Zhong, C.; Yang, Q.; Yang, Z.; Lu, X. Ind. Eng. Chem. Res. 2012, 51, 11274.
[212]
Kaplan, K. H. Phys. Today 2007, 60, 31.
[213]
Schrier, J. J. Phys. Chem. Lett. 2010, 1, 2284.
[214]
Ghezzar, M. R.; Ognier, S.; Cavadias, S.; Abdelmalek, F.; Addou, A. Sep. Purif. Technol. 2013, 104, 250.
[215]
Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Wöll, C. J. Am. Chem. Soc. 2007, 129, 15118.
[216]
Li, D.-J.; Gu, Z.-G.; Zhang, J. Chem. Sci. 2020, 11, 1935.
[217]
Arslan, H. K.; Shekhah, O.; Wohlgemuth, J.; Franzreb, M.; Fischer, R. A.; Wöll, C. Adv. Funct. Mater. 2011, 21, 4228.
[218]
Vozar, S.; Poh, Y.-C.; Serbowicz, T.; Bachner, M.; Podsiadlo, P.; Qin, M.; Verploegen, E.; Kotov, N.; Hart, A. J. Rev. Sci. Instrum. 2009, 80, 023903.
[219]
Baac, H. W.; Ok, J. G.; Maxwell, A.; Lee, K.-T.; Chen, Y.-C.; Hart, A. J.; Xu, Z.; Yoon, E.; Guo, L. J. Sci. Rep. 2012, 2, 989.
[220]
Arslan, H. K.; Shekhah, O.; Wieland, D. C. F.; Paulus, M.; Sternemann, C.; Schroer, M. A.; Tiemeyer, S.; Tolan, M.; Fischer, R. A.; Wöll, C. J. Am. Chem. Soc. 2011, 133, 8158.
[221]
Li, W.; Zhang, Y.; Zhang, C.; Meng, Q.; Xu, Z.; Su, P.; Li, Q.; Shen, C.; Fan, Z.; Qin, L.; Zhang, G. Nat. Commun. 2016, 7, 11315.
Outlines

/