Two New Three-Dimensional Lanthanide Metal-organic Frameworks for the Highly Efficient Removal of Cs+ Ions※
Received date: 2021-12-31
Online published: 2022-01-24
Supported by
National Natural Science Foundation of China(U21A20296); National Natural Science Foundation of China(22076185); National Natural Science Foundation of China(21771183); Natural Science Foundation of Fujian Province(2020J06033)
137Cs has the strong radioactivity and long half-life. In the event of leaking, it will pose a great danger to human health and the environment. The effective removal of 137Cs+ from complex radioactive waste streams remains a challenge due to its high solubility, easy migration and the influence of interfering ions in the waste streams. In this study, two new three-dimensional microporous lanthanide metal-organic framework compounds (Me2NH2)0.5(H3O)0.25Na0.25Ln(OH)(stp)• 0.25H2O (FJSM-LnMOF; Ln=Eu, Tb; H3stp=2-sulfonic acid terephthalic acid) are synthesized by the solvothermal method, which have the good water stability and acid-base resistance. The adsorption performance of FJSM-LnMOFs for Cs+ are tested with solid-liquid ratio of 1∶1 under stirring at room temperature for 8 h. The adsorption kinetics of FJSM-EuMOF for Cs+ are tested with low-concentration Cs+ solution. FJSM-LnMOFs show fast kinetics and high adsorption capacities of Cs+ ions (the maximum adsorption capacities qmCs of FJSM-EuMOF and FJSM-TbMOF are 229.25 and 211.28 mg/g, respectively). They have good selectivity for Cs+ ions (KdCs value up to 2.18×103 mL/g). Even in the presence of interfering Na+, K+, Mg2+, Ca2+ ions, they still show selective adsorption performance for Cs+ ions. Impressively, we successfully obtain the single crystal structure of Cs+-absorbed product by soaking FJSM-EuMOF crystals in 20,000 mg/L Cs+ solution, which confirms that the adsorption mechanism of Cs+ ions is ion exchange by the means of single crystal structure analysis combined with various characterization methods including X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), energy dispersion spectrum (EDS), elemental analysis (EA). The results indicate that the highly efficient Cs+ adsorption of FJSM-LnMOF mainly originates from the strong interactions between COO– and $\text{SO}_{3}^{}$ functional groups from organic ligands and Cs+ ions, and the presence of easily exchangeable [Me2NH2]+ cations and [H3O]+ located in the channels. This work indicates the potential application of lanthanide metal-organic frameworks in the remediation of radioactive cesium.
Tiantian Lü , Wen Ma , Dongsun Zhan , Yanmin Zou , Jilong Li , Meiling Feng , Xiaoying Huang . Two New Three-Dimensional Lanthanide Metal-organic Frameworks for the Highly Efficient Removal of Cs+ Ions※[J]. Acta Chimica Sinica, 2022 , 80(5) : 640 -646 . DOI: 10.6023/A21120614
[1] | Wang, N.; Pang, H. W.; Yu, S. J.; Gu, P. C.; Song, S.; Wang, H. Q.; Wang, X. K. Acta Chim. Sinica 2019, 77, 143. (in Chinese) |
[1] | (王宁, 庞宏伟, 于淑君, 顾鹏程, 宋爽, 王宏青, 王祥科, 化学学报, 2019, 77, 143.) |
[2] | Rahman, R. O. A.; Ibrahium, H. A.; Hung, Y. T. Water 2011, 3, 551. |
[3] | Smith, J. T.; Wright, S. M.; Cross, M. A.; Monte, L.; Kudelsky, A. V.; Saxen, R.; Vakulovsky, S. M.; Timms, D. N. Environ. Sci. Technol. 2004, 38, 850. |
[4] | Ivanov, Y. A.; Lewyckyj, N.; Levchuk, S. E.; Prister, B. S.; Firsakova, S. K.; Arkhipov, N. P.; Arkhipov, A. N.; Kruglov, S. V.; Alexakhin, R. M.; Sandalls, J.; Askbrant, S. J. Environ. Radioact. 1997, 35, 1. |
[5] | Namiki, Y.; Namiki, T.; Ishii, Y.; Koido, S.; Nagase, Y.; Tsubota, A.; Tada, N.; Kitamoto, Y. Pharm. Res. 2012, 29, 1404. |
[6] | Li, G. D.; Ji, G. X.; Sun, X. L.; Du, W.; Liu, W.; Wang, S. A. J. Inorg. Mater. 2019, 35, 367. (in Chinese) |
[6] | (李国东, 姬国勋, 孙新利, 杜伟, 刘伟, 王殳凹, 无机材料学报, 2019, 35, 367.) |
[7] | Buesseler, K.; Aoyama, M.; Fukasawa, M. Environ. Sci. Technol. 2011, 45, 9931. |
[8] | Shakir, K.; Sohsah, M.; Soliman, M. Sep. Purif. Technol. 2007, 54, 373. |
[9] | Wang, J. L.; Zhuang, S. T. Rev. Environ. Sci. Biotechnol. 2019, 18, 231. |
[10] | Sinha, P. K.; Panicker, P. K.; Amalraj, R. V.; Krishnasamy, V. Waste Manage. (Oxford) 1995, 15, 149. |
[11] | Ding, D. H.; Lei, Z. F.; Yang, Y. N.; Zhang, Z. Y. Chem. Eng. J. 2014, 236, 17. |
[12] | Kim, T. Y.; An, S. S.; Shim, W. G.; Lee, J. W.; Cho, S. Y.; Kim, J. H. J. Ind. Eng. Chem. 2015, 27, 260. |
[13] | Yu, S. J.; Tang, H.; Zhang, D.; Wang, S. Q.; Qiu, M. Q.; Song, G.; Fu, D.; Hu, B. W.; Wang, X. K. Sci. Total Environ. 2022, 811, 152280. |
[14] | Wang, X. X.; Chen, L.; Wang, L.; Fan, Q. H.; Pan, D. Q.; Li, J. X.; Chi, F. T.; Xie, Y.; Yu, S. J.; Xiao, C. L.; Luo, F.; Wang, J.; Wang, X. L.; Chen, C. L.; Wu, W. S.; Shi, W. Q.; Wang, S.; Wang, X. K. Sci. China Chem. 2019, 62, 933. |
[15] | Li, J.; Wang, X. X.; Zhao, G. X.; Chen, C. L.; Chai, Z. F.; Alsaedi, A.; Hayat, T.; Wang, X. K. Chem. Soc. Rev. 2018, 47, 2322. |
[16] | Lysova, A. A.; Samsonenko, D. G.; Dorovatovskii, P. V.; Lazarenko, V. A.; Khrustalev, V. N.; Kovalenko, K. A.; Dybtsev, D. N.; Fedin, V. P. J. Am. Chem. Soc. 2019, 141, 17260. |
[17] | Dai, M.; Wang, J.; Li, L.; Wang, Q.; Liu, M.; Zhang, Y. Acta Chim. Sinica 2020, 78, 355. (in Chinese) |
[17] | (代迷迷, 王健, 李麟阁, 王琪, 刘美男, 张跃钢, 化学学报, 2020, 78, 355.) |
[18] | Guo, C.; Ma, X.; Wang, B. Acta Chim. Sinica 2021, 79, 967. (in Chinese) |
[18] | 郭彩霞, 马小杰, 王博, 化学学报, 2021, 79, 967.) |
[19] | Lü, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica 2021, 79, 869. (in Chinese) |
[19] | (吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.) |
[20] | Jin, K.; Lee, B.; Park, J. Coord. Chem. Rev. 2021, 427, 213473. |
[21] | Patra, K.; Ansari, S. A.; Mohapatra, P. K. J. Chromatogr. A 2021, 1655, 462491. |
[22] | Wang, Y.; Liu, Z.; Li, Y.; Bai, Z.; Liu, W.; Wang, Y.; Xu, X.; Xiao, C.; Sheng, D.; Juan, D.; Su, J.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. J. Am. Chem. Soc. 2015, 137, 6144. |
[23] | Liu, X. L.; Pang, H. W.; Liu, X. W.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M. Q.; Hu, B. W.; Yang, H.; Wang, X. K. Innovation 2021, 2, 100076. |
[24] | Zhang, N.; Yuan, L. Y.; Guo, W. L.; Luo, S. Z.; Chai, Z. F.; Shi, W. Q. ACS Appl. Mater. Interfaces 2017, 9, 25216. |
[25] | Feng, Y. F.; Jiang, H.; Li, S. N.; Wang, J.; Jing, X. Y.; Wang, Y. R.; Chen, M. Colloids Surf., A 2013, 431, 87. |
[26] | Rapti, S.; Sarma, D.; Diamantis, S. A.; Skliri, E.; Armatas, G. S.; Tsipis, A. C.; Hassan, Y. S.; Alkordi, M.; Malliakas, C. D.; Kanatzidis, M. G.; Lazarides, T.; Plakatouras, J. C.; Manos, M. J. J. Mater. Chem. A 2017, 5, 14707. |
[27] | Aguila, B.; Banerjee, D.; Nie, Z. M.; Shin, Y.; Ma, S. Q.; Thallapally, P. K. Chem. Commun. 2016, 52, 5940. |
[28] | Gao, Y. J.; Feng, M. L.; Zhang, B.; Wu, Z. F.; Song, Y.; Huang, X. Y. J. Mater. Chem. A 2018, 6, 3967. |
[29] | Feng, M. L.; Sarma, D.; Gao, Y. J.; Qi, X. H.; Li, W. A.; Huang, X. Y.; Kanatzidis, M. G. J. Am. Chem. Soc. 2018, 140, 11133. |
[30] | Tang, J. H.; Sun, H. Y.; Ma, W.; Feng, M. L.; Huang, X. Y. Chin. J. Struct. Chem. 2020, 39, 2157. |
[31] | Feng, M. L.; Sarma, D.; Qi, X. H.; Du, K. Z.; Huang, X. Y.; Kanatzidis, M. G. J. Am. Chem. Soc. 2016, 138, 12578. |
[32] | Feng, M. L.; Wang, K. Y.; Huang, X. Y. Chem. Rec. 2016, 16, 582. |
[33] | Qi, X. H.; Du, K. Z.; Feng, M. L.; Li, J. R.; Du, C. F.; Zhang, B.; Huang, X. Y. J. Mater. Chem. A 2015, 3, 5665. |
[34] | Zeng, X.; Liu, Y.; Zhang, T.; Jin, J. C.; Li, J. L.; Sun, Q.; Ai, Y. J.; Feng, M. L.; Huang, X. Y. Chem. Eng. J. 2021, 420. |
[35] | Liao, Y. Y.; Li, J. R.; Zhang, B.; Sun, H. Y.; Ma, W.; Jin, J. C.; Feng, M. L.; Huang, X. Y. ACS Appl. Mater. Interfaces 2021, 13, 5275. |
[36] | Li, W. A.; Li, J. R.; Zhang, B.; Sun, H. Y.; Jin, J. C.; Huang, X. Y.; Feng, M. L. ACS Appl. Mater. Interfaces 2021, 13, 10191. |
[37] | Li, J.; Jin, J.; Zou, Y.; Sun, H.; Zeng, X.; Huang, X.; Feng, M.; Kanatzidis, M. G. ACS Appl. Mater. Interfaces 2021, 13, 13434. |
[38] | Sun, H. Y.; Liu, Y.; Lin, J.; Yue, Z. H.; Li, W. A.; Jin, J. C.; Sun, Q.; Ai, Y. J.; Feng, M. L.; Huang, X. Y. Angew. Chem., Int. Ed. 2020, 59, 1878. |
[39] | El-Kamash, A. M. J. Hazard. Mater. 2008, 151, 432. |
[40] | Mertz, J. L.; Fard, Z. H.; Malliakas, C. D.; Manos, M. J.; Kanatzidis, M. G. Chem. Mater. 2013, 25, 2116. |
[41] | Ali, I. M.; Zakaria, E. S.; Aly, H. F. J. Radioanal. Nucl. Chem. 2010, 285, 483. |
[42] | Datta, S. J.; Moon, W. K.; Choi, D. Y.; Hwang, I. C.; Yoon, K. B. Angew. Chem., Int. Ed. 2014, 53, 7203. |
[43] | Park, Y.; Lee, Y. C.; Shin, W. S.; Choi, S. J. Chem. Eng. J. 2010, 162, 685. |
[44] | Naeimi, S.; Faghihian, H. Sep. Purif. Technol. 2017, 175, 255. |
[45] | He, J.; Ma, P. F.; Wang, Y.; Li, R. H.; Yuan, X. Q.; Zhang, L. J. Non-Cryst. Solids 2016, 431, 130. |
/
〈 |
|
〉 |