Article

Two New Three-Dimensional Lanthanide Metal-organic Frameworks for the Highly Efficient Removal of Cs+ Ions

  • Tiantian Lü ,
  • Wen Ma ,
  • Dongsun Zhan ,
  • Yanmin Zou ,
  • Jilong Li ,
  • Meiling Feng ,
  • Xiaoying Huang
Expand
  • a College of Material Science and Engineering, North University of China, Taiyuan 030051
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
*E-mail: ; Tel.: 0591-63173146; Fax: 0591-63173146.

Received date: 2021-12-31

  Online published: 2022-01-24

Supported by

National Natural Science Foundation of China(U21A20296); National Natural Science Foundation of China(22076185); National Natural Science Foundation of China(21771183); Natural Science Foundation of Fujian Province(2020J06033)

Abstract

137Cs has the strong radioactivity and long half-life. In the event of leaking, it will pose a great danger to human health and the environment. The effective removal of 137Cs+ from complex radioactive waste streams remains a challenge due to its high solubility, easy migration and the influence of interfering ions in the waste streams. In this study, two new three-dimensional microporous lanthanide metal-organic framework compounds (Me2NH2)0.5(H3O)0.25Na0.25Ln(OH)(stp)• 0.25H2O (FJSM-LnMOF; Ln=Eu, Tb; H3stp=2-sulfonic acid terephthalic acid) are synthesized by the solvothermal method, which have the good water stability and acid-base resistance. The adsorption performance of FJSM-LnMOFs for Cs+ are tested with solid-liquid ratio of 1∶1 under stirring at room temperature for 8 h. The adsorption kinetics of FJSM-EuMOF for Cs+ are tested with low-concentration Cs+ solution. FJSM-LnMOFs show fast kinetics and high adsorption capacities of Cs+ ions (the maximum adsorption capacities qmCs of FJSM-EuMOF and FJSM-TbMOF are 229.25 and 211.28 mg/g, respectively). They have good selectivity for Cs+ ions (KdCs value up to 2.18×103 mL/g). Even in the presence of interfering Na+, K+, Mg2+, Ca2+ ions, they still show selective adsorption performance for Cs+ ions. Impressively, we successfully obtain the single crystal structure of Cs+-absorbed product by soaking FJSM-EuMOF crystals in 20,000 mg/L Cs+ solution, which confirms that the adsorption mechanism of Cs+ ions is ion exchange by the means of single crystal structure analysis combined with various characterization methods including X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), energy dispersion spectrum (EDS), elemental analysis (EA). The results indicate that the highly efficient Cs+ adsorption of FJSM-LnMOF mainly originates from the strong interactions between COO and $\text{SO}_{3}^{}$ functional groups from organic ligands and Cs+ ions, and the presence of easily exchangeable [Me2NH2]+ cations and [H3O]+ located in the channels. This work indicates the potential application of lanthanide metal-organic frameworks in the remediation of radioactive cesium.

Cite this article

Tiantian Lü , Wen Ma , Dongsun Zhan , Yanmin Zou , Jilong Li , Meiling Feng , Xiaoying Huang . Two New Three-Dimensional Lanthanide Metal-organic Frameworks for the Highly Efficient Removal of Cs+ Ions[J]. Acta Chimica Sinica, 2022 , 80(5) : 640 -646 . DOI: 10.6023/A21120614

References

[1]
Wang, N.; Pang, H. W.; Yu, S. J.; Gu, P. C.; Song, S.; Wang, H. Q.; Wang, X. K. Acta Chim. Sinica 2019, 77, 143. (in Chinese)
[1]
(王宁, 庞宏伟, 于淑君, 顾鹏程, 宋爽, 王宏青, 王祥科, 化学学报, 2019, 77, 143.)
[2]
Rahman, R. O. A.; Ibrahium, H. A.; Hung, Y. T. Water 2011, 3, 551.
[3]
Smith, J. T.; Wright, S. M.; Cross, M. A.; Monte, L.; Kudelsky, A. V.; Saxen, R.; Vakulovsky, S. M.; Timms, D. N. Environ. Sci. Technol. 2004, 38, 850.
[4]
Ivanov, Y. A.; Lewyckyj, N.; Levchuk, S. E.; Prister, B. S.; Firsakova, S. K.; Arkhipov, N. P.; Arkhipov, A. N.; Kruglov, S. V.; Alexakhin, R. M.; Sandalls, J.; Askbrant, S. J. Environ. Radioact. 1997, 35, 1.
[5]
Namiki, Y.; Namiki, T.; Ishii, Y.; Koido, S.; Nagase, Y.; Tsubota, A.; Tada, N.; Kitamoto, Y. Pharm. Res. 2012, 29, 1404.
[6]
Li, G. D.; Ji, G. X.; Sun, X. L.; Du, W.; Liu, W.; Wang, S. A. J. Inorg. Mater. 2019, 35, 367. (in Chinese)
[6]
(李国东, 姬国勋, 孙新利, 杜伟, 刘伟, 王殳凹, 无机材料学报, 2019, 35, 367.)
[7]
Buesseler, K.; Aoyama, M.; Fukasawa, M. Environ. Sci. Technol. 2011, 45, 9931.
[8]
Shakir, K.; Sohsah, M.; Soliman, M. Sep. Purif. Technol. 2007, 54, 373.
[9]
Wang, J. L.; Zhuang, S. T. Rev. Environ. Sci. Biotechnol. 2019, 18, 231.
[10]
Sinha, P. K.; Panicker, P. K.; Amalraj, R. V.; Krishnasamy, V. Waste Manage. (Oxford) 1995, 15, 149.
[11]
Ding, D. H.; Lei, Z. F.; Yang, Y. N.; Zhang, Z. Y. Chem. Eng. J. 2014, 236, 17.
[12]
Kim, T. Y.; An, S. S.; Shim, W. G.; Lee, J. W.; Cho, S. Y.; Kim, J. H. J. Ind. Eng. Chem. 2015, 27, 260.
[13]
Yu, S. J.; Tang, H.; Zhang, D.; Wang, S. Q.; Qiu, M. Q.; Song, G.; Fu, D.; Hu, B. W.; Wang, X. K. Sci. Total Environ. 2022, 811, 152280.
[14]
Wang, X. X.; Chen, L.; Wang, L.; Fan, Q. H.; Pan, D. Q.; Li, J. X.; Chi, F. T.; Xie, Y.; Yu, S. J.; Xiao, C. L.; Luo, F.; Wang, J.; Wang, X. L.; Chen, C. L.; Wu, W. S.; Shi, W. Q.; Wang, S.; Wang, X. K. Sci. China Chem. 2019, 62, 933.
[15]
Li, J.; Wang, X. X.; Zhao, G. X.; Chen, C. L.; Chai, Z. F.; Alsaedi, A.; Hayat, T.; Wang, X. K. Chem. Soc. Rev. 2018, 47, 2322.
[16]
Lysova, A. A.; Samsonenko, D. G.; Dorovatovskii, P. V.; Lazarenko, V. A.; Khrustalev, V. N.; Kovalenko, K. A.; Dybtsev, D. N.; Fedin, V. P. J. Am. Chem. Soc. 2019, 141, 17260.
[17]
Dai, M.; Wang, J.; Li, L.; Wang, Q.; Liu, M.; Zhang, Y. Acta Chim. Sinica 2020, 78, 355. (in Chinese)
[17]
(代迷迷, 王健, 李麟阁, 王琪, 刘美男, 张跃钢, 化学学报, 2020, 78, 355.)
[18]
Guo, C.; Ma, X.; Wang, B. Acta Chim. Sinica 2021, 79, 967. (in Chinese)
[18]
郭彩霞, 马小杰, 王博, 化学学报, 2021, 79, 967.)
[19]
Lü, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica 2021, 79, 869. (in Chinese)
[19]
(吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
[20]
Jin, K.; Lee, B.; Park, J. Coord. Chem. Rev. 2021, 427, 213473.
[21]
Patra, K.; Ansari, S. A.; Mohapatra, P. K. J. Chromatogr. A 2021, 1655, 462491.
[22]
Wang, Y.; Liu, Z.; Li, Y.; Bai, Z.; Liu, W.; Wang, Y.; Xu, X.; Xiao, C.; Sheng, D.; Juan, D.; Su, J.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. J. Am. Chem. Soc. 2015, 137, 6144.
[23]
Liu, X. L.; Pang, H. W.; Liu, X. W.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M. Q.; Hu, B. W.; Yang, H.; Wang, X. K. Innovation 2021, 2, 100076.
[24]
Zhang, N.; Yuan, L. Y.; Guo, W. L.; Luo, S. Z.; Chai, Z. F.; Shi, W. Q. ACS Appl. Mater. Interfaces 2017, 9, 25216.
[25]
Feng, Y. F.; Jiang, H.; Li, S. N.; Wang, J.; Jing, X. Y.; Wang, Y. R.; Chen, M. Colloids Surf., A 2013, 431, 87.
[26]
Rapti, S.; Sarma, D.; Diamantis, S. A.; Skliri, E.; Armatas, G. S.; Tsipis, A. C.; Hassan, Y. S.; Alkordi, M.; Malliakas, C. D.; Kanatzidis, M. G.; Lazarides, T.; Plakatouras, J. C.; Manos, M. J. J. Mater. Chem. A 2017, 5, 14707.
[27]
Aguila, B.; Banerjee, D.; Nie, Z. M.; Shin, Y.; Ma, S. Q.; Thallapally, P. K. Chem. Commun. 2016, 52, 5940.
[28]
Gao, Y. J.; Feng, M. L.; Zhang, B.; Wu, Z. F.; Song, Y.; Huang, X. Y. J. Mater. Chem. A 2018, 6, 3967.
[29]
Feng, M. L.; Sarma, D.; Gao, Y. J.; Qi, X. H.; Li, W. A.; Huang, X. Y.; Kanatzidis, M. G. J. Am. Chem. Soc. 2018, 140, 11133.
[30]
Tang, J. H.; Sun, H. Y.; Ma, W.; Feng, M. L.; Huang, X. Y. Chin. J. Struct. Chem. 2020, 39, 2157.
[31]
Feng, M. L.; Sarma, D.; Qi, X. H.; Du, K. Z.; Huang, X. Y.; Kanatzidis, M. G. J. Am. Chem. Soc. 2016, 138, 12578.
[32]
Feng, M. L.; Wang, K. Y.; Huang, X. Y. Chem. Rec. 2016, 16, 582.
[33]
Qi, X. H.; Du, K. Z.; Feng, M. L.; Li, J. R.; Du, C. F.; Zhang, B.; Huang, X. Y. J. Mater. Chem. A 2015, 3, 5665.
[34]
Zeng, X.; Liu, Y.; Zhang, T.; Jin, J. C.; Li, J. L.; Sun, Q.; Ai, Y. J.; Feng, M. L.; Huang, X. Y. Chem. Eng. J. 2021, 420.
[35]
Liao, Y. Y.; Li, J. R.; Zhang, B.; Sun, H. Y.; Ma, W.; Jin, J. C.; Feng, M. L.; Huang, X. Y. ACS Appl. Mater. Interfaces 2021, 13, 5275.
[36]
Li, W. A.; Li, J. R.; Zhang, B.; Sun, H. Y.; Jin, J. C.; Huang, X. Y.; Feng, M. L. ACS Appl. Mater. Interfaces 2021, 13, 10191.
[37]
Li, J.; Jin, J.; Zou, Y.; Sun, H.; Zeng, X.; Huang, X.; Feng, M.; Kanatzidis, M. G. ACS Appl. Mater. Interfaces 2021, 13, 13434.
[38]
Sun, H. Y.; Liu, Y.; Lin, J.; Yue, Z. H.; Li, W. A.; Jin, J. C.; Sun, Q.; Ai, Y. J.; Feng, M. L.; Huang, X. Y. Angew. Chem., Int. Ed. 2020, 59, 1878.
[39]
El-Kamash, A. M. J. Hazard. Mater. 2008, 151, 432.
[40]
Mertz, J. L.; Fard, Z. H.; Malliakas, C. D.; Manos, M. J.; Kanatzidis, M. G. Chem. Mater. 2013, 25, 2116.
[41]
Ali, I. M.; Zakaria, E. S.; Aly, H. F. J. Radioanal. Nucl. Chem. 2010, 285, 483.
[42]
Datta, S. J.; Moon, W. K.; Choi, D. Y.; Hwang, I. C.; Yoon, K. B. Angew. Chem., Int. Ed. 2014, 53, 7203.
[43]
Park, Y.; Lee, Y. C.; Shin, W. S.; Choi, S. J. Chem. Eng. J. 2010, 162, 685.
[44]
Naeimi, S.; Faghihian, H. Sep. Purif. Technol. 2017, 175, 255.
[45]
He, J.; Ma, P. F.; Wang, Y.; Li, R. H.; Yuan, X. Q.; Zhang, L. J. Non-Cryst. Solids 2016, 431, 130.
Outlines

/