Article

Study on the Selective Hydrogenation of Quinoline Catalyzed by Composites of Metal-Organic Framework and Pt Nanoparticles

  • Junmin Chen ,
  • Chengqian Cui ,
  • Hanlin Liu ,
  • Guodong Li
Expand
  • a College of Chemistry, Zhengzhou University, Zhengzhou 450001
    b Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190
    c School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
† These authors contributed equally to this work.

Received date: 2021-12-30

  Online published: 2022-02-08

Supported by

National Key Research & Development Program of China(2021YFA1500403); Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000); National Natural Science Foundation of China(22173024); National Natural Science Foundation of China(21722102); National Natural Science Foundation of China(51672053)

Abstract

Selective hydrogenation of quinoline toward 1,2,3,4-tetrahydroquinoline shows great application potential in the production of medicine, pesticides and fine chemicals. However, the hydrogenation of quinoline is usually carried out under harsh reaction conditions such as high temperature and high pressure, and thus, it is a great challenge to achieve selective hydrogenation of quinoline under mild conditions. In this work, we construct platinum nanoparticles (Pt NPs) sandwiched in an inner core and an outer shell composed of a metal-organic framework synthesized by zirconium chloride and 2,2'-bipyridine-5,5'-dicarboxylic acid (known as UiO-67N). Different sandwich structures with shell thickness of 11, 28 and 42 nm are precisely prepared. The obtained catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma emission spectrometer (ICP-OES), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption and desorption. Impressively, the selective hydrogenation of quinoline over Pt NPs is significantly enhanced by using UiO-67N as support in respect with UiO-67. Moreover, UiO-67N@Pt@UiO-67N exhibits the selective hydrogenation of quinoline with high conversion rate (>99%) and high selectivity of 1,2,3,4-tetrahydroisoquinoline (>99%) at room temperature. The shell thickness has significant influence on the catalytic activity of Pt NPs, and with increasing the shell thickness from 11 to 42 nm, the conversion rate decreases from 99% to 53.5% under the identical conditions, while the selectivity of 1,2,3,4-tetrahydroisoquinoline is well kept. When other derivatives of quinoline are used as substrates, the excellent activity and selectivity are also achieved over sandwich catalysts. Besides, the UiO-67N@Pt@UiO-67N catalyst could be used at least 5 times without obvious deactivation, but the significant deactivation happens over supported UiO-67N@Pt catalyst. XPS and FTIR measurements show that the excellent catalytic performance mainly originates from the electron transfer between UiO-67N and Pt NPs, and the strong interfacial interaction between UiO-67N and quinoline.

Cite this article

Junmin Chen , Chengqian Cui , Hanlin Liu , Guodong Li . Study on the Selective Hydrogenation of Quinoline Catalyzed by Composites of Metal-Organic Framework and Pt Nanoparticles[J]. Acta Chimica Sinica, 2022 , 80(4) : 467 -475 . DOI: 10.6023/A21120601

References

[1]
Muthukrishnan, I.; Sridharan, V.; Carlos Menendez, J. Chem. Rev. 2019, 119, 5057.
[2]
Yadav, P.; Kumar, A.; Althagafi, I.; Nemaysh, V.; Rai, R.; Pratap, R. Curr. Top. Med. Chem. 2021, 21, 1587.
[3]
Cai, X.; Xie, B. Chem. Bull. 2012, 75, 7. (in Chinese)
[3]
(蔡小华, 谢兵, 化学通报, 2012, 75, 7.)
[4]
Chen, R.; Yang, X.; Tian, H.; Wang, X.; Hagfeldt, A.; Sun, L. Chem. Mater. 2007, 19, 4007.
[5]
Li, C.; Ma, Y.; Liu, H.; Tao, L.; Ren, Y.; Chen, X.; Li, H.; Yang, Q. Chin. J. Catal. 2020, 41, 1288.
[6]
Guo, H.; Zhuang, Y.; Wang, Y.; Cao, J.; Guo, X.; Zhang, G. Chem. Ind. Eng. Prog. 2012, 31, 2288. (in Chinese)
[6]
(郭辉, 庄玉伟, 王颖, 曹健, 郭晓战, 张国宝, 化工进展, 2012, 31, 2288.)
[7]
Rosales, M.; Jhonatan Bastidas, L.; Gonzalez, B.; Vallejo, R.; Baricelli, P. J. Catal. Lett. 2011, 141, 1305.
[8]
Sun, S.; Nagorny, P. Chem. Commun. 2020, 56, 8432.
[9]
Rosales, M.; Castillo, S.; Gonzalez, A.; Gonzalez, L.; Molina, K.; Navarro, J.; Pacheco, I.; Perez, H. Transit. Metal Chem. 2004, 29, 221.
[10]
Wang, T.; Zhuo, L.-G.; Li, Z.; Chen, F.; Ding, Z.; He, Y.; Fan, Q.-H.; Xiang, J.; Yu, Z.-X.; Chan, A. S. C. J. Am. Chem. Soc. 2011, 133, 9878.
[11]
Gong, Y.; Zhang, P.; Xu, X.; Li, Y.; Li, H.; Wang, Y. J. Catal. 2013, 297, 272.
[12]
Zhang, F.; Ma, C.; Chen, S.; Zhang, J.; Li, Z.; Zhang, X.-M. Mol. Catal. 2018, 452, 145.
[13]
Bai, L.; Wang, X.; Chen, Q.; Ye, Y.; Zheng, H.; Guo, J.; Yin, Y.; Gao, C. Angew. Chem., Int. Ed. 2016, 55, 15656.
[14]
Zhu, D.; Jiang, H.; Zhang, L.; Zheng, X.; Fu, H.; Yuan, M.; Chen, H.; Li, R. ChemCatChem 2014, 6, 2954.
[15]
Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K.-I. J. Am. Chem. Soc. 2009, 131, 8410.
[16]
Guo, X.; Chen, X.; Su, D.; Liang, C. Acta Chim. Sinica 2018, 76, 22. (in Chinese)
[16]
(郭小玲, 陈霄, 苏党生, 梁长海, 化学学报, 2018, 76, 22.)
[17]
Zhao, T.; Dong, M.; Zhao, Y.; Liu, Y. Prog. Chem. 2017, 29, 1252. (in Chinese)
[17]
(赵田, 董茗, 赵熠, 刘跃军, 化学进展, 2017, 29, 1252.)
[18]
Pan, Y.; Qian, Y.; Zheng, X.; Chu, S.-Q.; Yang, Y.; Ding, C.; Wang, X.; Yu, S.-H.; Jiang, H.-L. Natl. Sci. Rev. 2021, 8, 224.
[19]
Wu, Q.; Zhang, C.; Sun, K.; Jiang, H.-L. Acta Chim. Sinica 2020, 78, 688. (in Chinese)
[19]
(吴浅耶, 张晨曦, 孙康, 江海龙, 化学学报, 2020, 78, 688.)
[20]
Jiao, L.; Wang, J.; Jiang, H.-L. Acc. Mater. Res. 2021, 2, 327.
[21]
Choe, K.; Zheng, F.; Wang, H.; Yuan, Y.; Zhao, W.; Xue, G.; Qiu, X.; Ri, M.; Shi, X.; Wang, Y.; Li, G.; Tang, Z. Angew. Chem., Int. Ed. 2020, 59, 3650.
[22]
Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Nature 2016, 539, 76.
[23]
Zhang, J.-W.; Li, D.-D.; Lu, G.-P.; Deng, T.; Cai, C. ChemCatChem 2018, 10, 4980.
[24]
Wang, X.; Chen, W.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H.; Dong, J.; Zheng, L.; Yan, W.; Zheng, X.; Li, Z.; Wang, X.; Yang, J.; He, D.; Wang, Y.; Deng, Z.; Wu, Y.; Li, Y. J. Am. Chem. Soc. 2017, 139, 9419.
[25]
Chen, F.; Shen, K.; Chen, J.; Yang, X.; Cui, J.; Li, Y. ACS Central Sci. 2019, 5, 176.
[26]
Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W.; Huo, F. Adv. Mater. 2021, 33, 2007442.
[27]
Dou, R.; Tan, X.; Fan, Y.; Pei, Y.; Qiao, M.; Fan, K.; Sun, B.; Zong, B. Acta Chim. Sinica 2016, 74, 503. (in Chinese)
[27]
(窦镕飞, 谭晓荷, 范义秋, 裴燕, 乔明华, 范康年, 孙斌, 宗保宁, 化学学报, 2016, 74, 503.)
[28]
Ding, S.; Yan, Q.; Jiang, H.; Zhong, Z.; Chen, R.; Xing, W. Chem. Eng. J. 2016, 296, 146.
[29]
Ji, Z.; Shen, X.; Yang, J.; Zhu, G.; Chen, K. Appl. Catal. B 2014, 144, 454.
[30]
Sun, J.; Wang, H.; Gao, X.; Zhu, X.; Ge, Q.; Liu, X.; Han, J. Micropor. Mesopor. Mat. 2017, 247, 1.
[31]
Lin, L.; Liu, H.; Zhang, X. Chem. Eng. J. 2017, 328, 124.
[32]
Hester, P.; Xu, S.; Liang, W.; Al-Janabi, N.; Vakili, R.; Hill, P.; Muryn, C. A.; Chen, X.; Martin, P. A.; Fan, X. J. Catal. 2016, 340, 85.
[33]
Huang, Y.; Liu, S.; Lin, Z.; Li, W.; Li, X.; Cao, R. J. Catal. 2012, 292, 111.
[34]
Li, L.; Li, Z.; Yang, W.; Huang, Y.; Huang, G.; Guan, Q.; Dong, Y.; Lu, J.; Yu, S.-H.; Jiang, H.-L. Chem 2021, 7, 686.
[35]
Chen, D.; Yang, W.; Jiao, L.; Li, L.; Yu, S.-H.; Jiang, H.-L. Adv. Mater. 2020, 32, 2000041.
[36]
Dhakshinamoorthy, A.; Garcia, H. Chem. Soc. Rev. 2012, 41, 5262.
[37]
Fish, R. H.; Kim, H. S.; Fong, R. H. Organometallics 1991, 10, 770.
[38]
Fish, R. H.; Michaels, J. N.; Moore, R. S.; Heinemann, H. J. Catal. 1990, 123, 74.
[39]
Li, X.; Van Zeeland, R.; Maligal-Ganesh, R. V.; Pei, Y.; Power, G.; Stanley, L.; Huang, W. ACS Catal. 2016, 6, 6324.
[40]
Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850.
[41]
Zhang, S.; Gan, J.; Xia, Z.; Chen, X.; Zou, Y.; Duan, X.; Qu, Y. Chem 2020, 6, 2994.
[42]
Huang, R.; Cao, C.; Liu, J.; Zheng, L.; Zhang, Q.; Gu, L.; Jiang, L.; Song, W. ACS Appl. Mater. Interf. 2020, 12, 17651.
[43]
Shaikh, M. N.; Kalanthoden, A. N.; Ali, M.; Haque, M. A.; Aziz, M. A.; Abdelnaby, M. M.; Rani, S. K.; Bakare, A. I. Chemistryselect 2020, 5, 14827.
[44]
Bravo-Sanabria, C. A.; Solano-Delgado, L. C.; Ospina-Ospina, R.; Martinez-Ortega, F.; Ramirez-Caballero, G. E. Micropor. Mesopor. Mat. 2020, 305, 110359.
[45]
Ozel, A. E.; Buyukmurat, Y.; Akyuz, S. J. Mol. Struct. 2001, 565, 455.
[46]
Yu, H.; Zhang, L.; Gao, S.; Wang, H.; He, Z.; Xu, Y.; Huang, K. J. Catal. 2021, 396, 342.
[47]
Zhan, T.; Liu, W.; Teng, J.; Yue, C.; Li, D.; Wang, S.; Tan, H. Chem. Commun. 2019, 55, 2620.
[48]
Yu, X.; Nie, R.; Zhang, H.; Lu, X.; Zhou, D.; Xia, Q. Micropor. Mesopor. Mat. 2018, 256, 10.
[49]
Li, L.; Tang, S.; Wang, C.; Lv, X.; Jiang, M.; Wu, H.; Zhao, X. Chem. Commun. 2014, 50, 2304.
Outlines

/