Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (4): 467-475.DOI: 10.6023/A21120601 Previous Articles     Next Articles

Special Issue: 中国科学院青年创新促进会合辑

Article

金属有机框架与Pt粒子复合材料催化喹啉选择性加氢性能研究

陈俊敏a,b, 崔承前b,c, 刘瀚林b,c, 李国栋a,b,c,*()   

  1. a 郑州大学化学学院 郑州 450001
    b 国家纳米科学中心 中国科学院纳米系统与多级次制造重点实验室 纳米科学卓越创新中心 北京 100190
    c 中国科学院大学纳米科学与技术学院 北京 100049
  • 投稿日期:2021-12-30 发布日期:2022-04-28
  • 通讯作者: 李国栋
  • 作者简介:
    庆祝中国科学院青年创新促进会十年华诞.
    † 共同第一作者
  • 基金资助:
    国家重点研发计划(2021YFA1500403); 中国科学院战略性先导科技专项B类研发(XDB36000000); 国家自然科学基金(22173024); 国家自然科学基金(21722102); 国家自然科学基金(51672053)

Study on the Selective Hydrogenation of Quinoline Catalyzed by Composites of Metal-Organic Framework and Pt Nanoparticles

Junmin Chena,b, Chengqian Cuib,c, Hanlin Liub,c, Guodong Lia,b,c()   

  1. a College of Chemistry, Zhengzhou University, Zhengzhou 450001
    b Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190
    c School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049
  • Received:2021-12-30 Published:2022-04-28
  • Contact: Guodong Li
  • About author:
    Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
    † These authors contributed equally to this work.
  • Supported by:
    National Key Research & Development Program of China(2021YFA1500403); Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000); National Natural Science Foundation of China(22173024); National Natural Science Foundation of China(21722102); National Natural Science Foundation of China(51672053)

Selective hydrogenation of quinoline toward 1,2,3,4-tetrahydroquinoline shows great application potential in the production of medicine, pesticides and fine chemicals. However, the hydrogenation of quinoline is usually carried out under harsh reaction conditions such as high temperature and high pressure, and thus, it is a great challenge to achieve selective hydrogenation of quinoline under mild conditions. In this work, we construct platinum nanoparticles (Pt NPs) sandwiched in an inner core and an outer shell composed of a metal-organic framework synthesized by zirconium chloride and 2,2'-bipyridine-5,5'-dicarboxylic acid (known as UiO-67N). Different sandwich structures with shell thickness of 11, 28 and 42 nm are precisely prepared. The obtained catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma emission spectrometer (ICP-OES), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption and desorption. Impressively, the selective hydrogenation of quinoline over Pt NPs is significantly enhanced by using UiO-67N as support in respect with UiO-67. Moreover, UiO-67N@Pt@UiO-67N exhibits the selective hydrogenation of quinoline with high conversion rate (>99%) and high selectivity of 1,2,3,4-tetrahydroisoquinoline (>99%) at room temperature. The shell thickness has significant influence on the catalytic activity of Pt NPs, and with increasing the shell thickness from 11 to 42 nm, the conversion rate decreases from 99% to 53.5% under the identical conditions, while the selectivity of 1,2,3,4-tetrahydroisoquinoline is well kept. When other derivatives of quinoline are used as substrates, the excellent activity and selectivity are also achieved over sandwich catalysts. Besides, the UiO-67N@Pt@UiO-67N catalyst could be used at least 5 times without obvious deactivation, but the significant deactivation happens over supported UiO-67N@Pt catalyst. XPS and FTIR measurements show that the excellent catalytic performance mainly originates from the electron transfer between UiO-67N and Pt NPs, and the strong interfacial interaction between UiO-67N and quinoline.

Key words: metal-organic framework, Pt nanoparticles, sandwich structure, electron transfer, hydrogenation of quinoline