Communication

Intramolecular Ring-opening of Indole-cyclopropanes

  • Long Zheng ,
  • Lijia Wang ,
  • Yong Tang
Expand
  • a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, University of Chinese Academy of Sciences, Shanghai 200032, China
    b Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
    c Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2022-01-01

  Online published: 2022-02-11

Supported by

National Natural Science Foundation of China(91956103); National Natural Science Foundation of China(21772224)

Abstract

Donor-acceptor cyclopropanes as efficient three-carbon synthetic building blocks were widely employed in the synthesis of many natural products and complex drug molecules. However, the ring-opening of aliphatic substituted cyclopropanes, owing to their poor reactivity, usually suffers from the harsh reaction conditions such as strong Lewis acid, large amount of catalyst, high reaction temperature and so on. In this paper, In(NTf2)3 was found as a powerful Lewis acid to catalyze the intramolecular nucleophilic ring-opening reaction of donor-acceptor cyclopropane with indole. This reaction could be used to construct the pyrrolo[1,2-a]-indole framework structure in a facile way. This method could be conducted in mild reaction conditions with a broad substrate scope (15 examples), leading to the target products in up to 96% yield. The general procedure is as following: To a dry Schlenk tube in a glove box, was placed In(NTf2)3 (0.1 equiv.), 4 Å molecular sieve (50 mg) and a stir bar. The tube was capped and brought out of the glovebox. After connected to argon via a typical Schlenk line system, a solution of 1 (1.0 equiv.) in PhCl (1 mL) was added dropwise until the reaction was completed (monitored by thin-layer chromatography). Et3N was added to quench the reaction and the reaction mixture was filtered through a thin layer of silica gel and eluted with EtOAc (100 mL). After removal of the volatiles under reduced pressure, the residue was purified by flash chromatography over silica gel to afford the product. When indole substrate contains electron-withdrawing substituents, the reaction temperature needs to be increased to 100 ℃ to obtain the target product.

Cite this article

Long Zheng , Lijia Wang , Yong Tang . Intramolecular Ring-opening of Indole-cyclopropanes[J]. Acta Chimica Sinica, 2022 , 80(3) : 255 -258 . DOI: 10.6023/A22010002

References

[1]
(a) Magnus, P.; Gallagher, T.; Brown, P.; Huffman, J. C. J. Am. Chem. Soc. 1984, 106, 2105.
[1]
(b) Gataullin, R. R. Russ. J. Org. Chem. 2009, 45, 321.
[1]
(c) Dethe, D. H.; Erande, R. D.; Ranjan, A. J. Am. Chem. Soc. 2011, 133, 2864.
[1]
(d) Vallakati, R.; May, J. A. J. Am. Chem. Soc. 2012, 134, 6936.
[1]
(e) Zeldin, R. M.; Toste, F. D. Chem. Sci. 2011, 2, 1706.
[1]
(f) Cheng, S.; Seo, J.; Huang, B. T.; Napolitano, T. Int. J. Oncol. 2016, 49, 1815.
[1]
(g) Ghosh, A.; Bainbridge, D. T.; Stanley, L. M. J. Org. Chem. 2016, 81, 7945.
[1]
(h) Zhan, L.; Hu, W.; Wang, M.; Huang, B.; Long, Y.-Q. Acta Chim. Sinica 2021, 79, 903. (in Chinese)
[1]
(占林俊, 胡玮, 王梅, 黄斌, 龙亚秋, 化学学报, 2021, 79, 903).
[1]
(i) Zhou, B.; Liang, R.; Cao, Z.; Zhou, P.; Jia, Y. Acta Chim. Sinica 2021, 79, 176. (in Chinese)
[1]
(周波, 梁仁校, 曹中艳, 周平海, 贾义霞, 化学学报, 2021, 79, 176).
[2]
Hong, L.; Sun, W. S.; Liu, C. X.; Wang, L.; Wang, R. Chem. Eur. J. 2010, 16, 440.
[3]
Patil, D. V.; Cavitt, M. A.; France, S. Org. Lett. 2011, 13, 5820.
[4]
Tejeda, J. E. C.; Landschoot, B. K.; Kerr, M. A. Org. Lett. 2016, 18, 2142.
[5]
(a) Yip, K. T.; Yang, D. Org. Lett. 2011, 13, 2134.
[5]
(b) Zhang, W.; Chen, P. H.; Liu, G. S. Angew. Chem. Int. Ed. 2017, 56, 5336.
[6]
For reviews and recent examples, see: (a) Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y. C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165.
[6]
(b) Reissig, H. U.; Zimmer, R. Chem. Rev. 2003, 103, 1151.
[6]
(c) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051.
[6]
(d) Tang, P.; Qin, Y. Synthesis 2012, 44, 2969.
[6]
(e) Wang, Z. W. Synlett 2012, 23, 2311.
[6]
(f) Reissig, H. U.; Zimmer, R. Angew. Chem. Int. Ed. 2015, 54, 5009.
[6]
(g) Wang, Y.; Yu, Z.-X. Acc. Chem. Res. 2015, 48, 2288.
[6]
(h) Qiu, Y.; Lu, K.; Wei, B.; Qian, Z.; He, Z. Chin. J. Org. Chem. 2021, 41, 4066. (in Chinese)
[6]
(仇裕鹤, 鲁康辉, 韦邦尺, 潜振凯, 贺峥杰, 有机化学, 2021, 41, 4066.)
[7]
For reviews, see: (a) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321.
[7]
(b) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
[7]
(c) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804.
[7]
(d) de Nanteuil, F.; De Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912.
[7]
(e) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504.
[7]
(f) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655.
[8]
(a) Beal, R. B.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1986, 51, 4391.
[8]
(b) Tanimori, S.; Niki, T.; He, M. Q.; Nakayama, M. Heterocycles 1994, 38, 1533.
[8]
(c) Kotsuki, H.; Arimura, K.; Maruzawa, R.; Ohshima, R. Synlett 1999, 5, 650.
[9]
(a) Xing, S. Y.; Pan, W. Y.; Liu, C.; Ren, J.; Wang, Z. W. Angew. Chem., Int. Ed. 2010, 49, 3215.
[9]
(b) Zhu, W. J.; Fang, J.; Liu, Y.; Ren, J.; Wang, Z. W. Angew. Chem. Int. Ed. 2013, 52, 2032.
[10]
For reviews, see: (a) Liao, S.; Sun, X. L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260.
[10]
(b) Wang, L.; Tang, Y. Isr. J. Chem. 2016, 56, 463.
[10]
(c) Wang, L.; Zhou, J.; Tang, Y. Chin. J. Chem. 2018, 36, 1123.
[11]
For recent examples, see: (a) Liu, H.-K.; Wang, S. R.; Song, X.-Y.; Zhao, L.-P.; Wang, L.; Tang, Y. Angew. Chem., Int. Ed. 2019, 58, 4345.
[11]
(b) Zheng, Z.-B.; Cheng, W.-F.; Wang, L.; Zhu, J.; Sun, X.-L.; Tang, Y. Chin. J. Chem. 2020, 38, 1629.
[12]
For selected examples of indoles with cyclopropanes, see: (a) Harrington, P.; Kerr, M. A. Tetrahedron Lett. 1997, 38, 5949.
[12]
(b) Kerr, M. A.; Keddy, R. G. Tetrahedron Lett. 1999, 40, 5671.
[12]
(c) England, D. B.; Kuss, T. D. O.; Keddy, R. G.; Kerr, M. A. J. Org. Chem. 2001, 66, 4704.
[12]
(d) Bajtos, B.; Yu, M.; Zhao, H.; Pagenkopf, B. L. J. Am. Chem. Soc. 2007, 129, 9631.
[12]
(e) Wales, S. M.; Walker, M. M.; Johnson, J. S. Org. Lett. 2013, 15, 2558.
[12]
(f) Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851.
[12]
(g) Liu, Q. J.; Yan, W. G.; Wang, L.; Zhang, X. P.; Tang, Y. Org. Lett. 2015, 17, 4014.
[12]
(h) Yan, W.-G.; Wang, P.; Wang, L.; Sun, X.-L.; Tang, Y. Acta Chim. Sinica 2017, 75, 783. (in Chinese)
[12]
(严文广, 王盼, 王丽佳, 孙秀丽, 唐勇, 化学学报, 2017, 75, 783.)
[13]
(a) Zheng, C.; Wu, Q.-F.; You, S.-L. J. Org. Chem. 2013, 78, 4357.
[13]
(b) Zheng, C.; Xia, Z.-L.; You, S.-L. Chem 2018, 4, 1952.
[14]
Zhu, J.; Liang, Y.; Wang, L.; Zheng, Z. B.; Houk, K. N.; Tang, Y. J. Am. Chem. Soc. 2014, 136, 6900.
Outlines

/