Perspective

Nano-Tracing: Recent Progress in Sourcing Tracing Technology of Nanoparticles

  • Xuezhi Yang ,
  • Dawei Lu ,
  • Weichao Wang ,
  • Hang Yang ,
  • Qian Liu ,
  • Guibin Jiang
Expand
  • a School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000
    b State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Beijing 100085
    c College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-31

  Online published: 2022-03-01

Supported by

National Natural Science Foundation of China(21976194); National Natural Science Foundation of China(22188102)

Abstract

Nowadays, nanotechnology has been widely used in many fields such as medicine, catalysis, food and agriculture. With the rapid growth of the production amounts of anthropogenic nanoparticles (NPs), they will inevitably enter the natural environment after use and disposal. As a result, their potential risks to the environment and human health have caused significant concerns. Tracing the sources and environmental transformation of NPs is the prerequisite for the accurate evaluation of toxicity effects and pollution control. The recent progress in the area of source tracing technologies for NPs, including multi- chemical fingerprinting technology, non-traditional stable isotope tracing technology, isotope labeling technology, and DNA labeling technology is outlined. Furthermore, the future development of tracing technologies of NPs is also prospected.

Cite this article

Xuezhi Yang , Dawei Lu , Weichao Wang , Hang Yang , Qian Liu , Guibin Jiang . Nano-Tracing: Recent Progress in Sourcing Tracing Technology of Nanoparticles[J]. Acta Chimica Sinica, 2022 , 80(5) : 652 -658 . DOI: 10.6023/A21120612

References

[1]
Hochella, M. F., Jr.; Mogk, D. W.; Ranville, J.; Allen, I. C.; Luther, G. W.; Marr, L. C.; McGrail, B. P.; Murayama, M.; Qafoku, N. P.; Rosso, K. M.; Sahai, N.; Schroeder, P. A.; Vikesland, P.; Westerhoff, P.; Yang, Y. Science 2019, 363, 1414.
[2]
Huang, X.; Liu, H. H.; Lu, D. W.; Lin, Y.; Liu, J. F.; Liu, Q.; Nie, Z. X.; Jiang, G. B. Chem. Soc. Rev. 2021, 50, 5243.
[3]
Gilbertson, L. M.; Pourzahedi, L.; Laughton, S.; Gao, X. Y.; Zimmerman, J. B.; Theis, T. L.; Westerhoff, P.; Lowry, G. V. Nat. Nanotechnol. 2020, 15, 801.
[4]
Mitrano, D. M.; Wick, P.; Nowack, B. Nat. Nanotechnol. 2021, 16, 491.
[5]
Winiger, P.; Barrett, T. E.; Sheesley, R. J.; Huang, L.; Sharma, S.; Barrie, L. A.; Yttri, K. E.; Evangeliou, N.; Eckhardt, S.; Stohl, A.; Klimont, Z.; Heyes, C.; Semiletov, I. P.; Dudarev, O. V.; Charkin, A.; Shakhova, N.; Holmstrand, H.; Andersson, A.; Gustafsson, O. Sci. Adv. 2019, 5, eaau8052.
[6]
Kah, M.; Johnston, L. J.; Kookana, R. S.; Bruce, W.; Haase, A.; Ritz, V.; Dinglasan, J.; Doak, S.; Garelick, H.; Gubala, V. Nat. Nanotechnol. 2021, 16, 955.
[7]
Svendsen, C.; Walker, L. A.; Matzke, M.; Lahive, E.; Harrison, S.; Crossley, A.; Park, B.; Lofts, S.; Lynch, I.; Vazquez-Campos, S.; Kaegi, R.; Gogos, A.; Asbach, C.; Cornelis, G.; von der Kammer, F.; van den Brink, N. W.; Mays, C.; Spurgeon, D. J. Nat. Nanotechnol. 2020, 15, 731.
[8]
Tsang, M. P.; Kikuchi-Uehara, E.; Sonnemann, G. W.; Aymonier, C.; Hirao, M. Nat. Nanotechnol. 2017, 12, 734.
[9]
Colvin, V. L. Nat. Biotechnol. 2003, 21, 1166.
[10]
Laborda, F.; Bolea, E.; Cepria, G.; Gomez, M. T.; Jimenez, M. S.; Perez-Arantegui, J.; Castillo, J. R. Anal. Chim. Acta 2016, 904, 10.
[11]
Montano, M. D.; Lowry, G. V.; von der Kammer, F.; Blue, J.; Ranville, J. F. Environ. Chem. 2014, 11, 351.
[12]
Lu, D. W.; Luo, Q.; Chen, R.; Zhuan Sun, Y. X.; Jiang, J.; Wang, W. C.; Yang, X. Z.; Zhang, L. Y.; Liu, X. L.; Li, F.; Liu, Q.; Jiang, G. B. Nat. Commun. 2020, 11, 2567.
[13]
Zhang, Q. H.; Lu, D. W.; Wang, D. Y.; Yang, X. Z.; Zuo, P. J.; Yang, H.; Fu, Q.; Liu, Q.; Jiang, G. B. Environ. Sci. Technol. 2020, 54, 9274.
[14]
Yang, Y.; Chen, B.; Hower, J.; Schindler, M.; Winkler, C.; Brandt, J.; Di Giulio, R.; Ge, J. P.; Liu, M.; Fu, Y. H.; Zhang, L. J.; Chen, Y. R.; Priya, S.; Hochella, M. F., J. Nat. Commun. 2017, 8, 194.
[15]
Yang, Y.; Colman, B. P.; Bernhardt, E. S.; Hochella, M. F. Environ. Sci. Technol. 2015, 49, 3375.
[16]
Lee, S. Y.; Bi, X. Y.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Environ. Sci. Technol. 2014, 48, 10291.
[17]
Gundlach-Graham, A.; Hendriks, L.; Mehrabi, K.; Guenther, D. Anal. Chem. 2018, 90, 11847.
[18]
Abdolahpur Monikh, F.; Chupani, L.; Vijver, M. G.; Vancová, M.; Peijnenburg, W. J. G. M. Sci. Total Environ. 2019, 660, 1283.
[19]
Praetorius, A.; Gundlach-Graham, A.; Goldberg, E.; Fabienke, W.; Navratilova, J.; Gondikas, A.; Kaegi, R.; Gunther, D.; Hofmann, T.; von der Kammer, F. Environ. Sci. Nano 2017, 4, 307.
[20]
Gondikas, A.; von der Kammer, F.; Kaegi, R.; Borovinskaya, O.; Neubauer, E.; Navratilova, J.; Praetorius, A.; Cornelis, G.; Hofmann, T. Environ. Sci. Nano 2018, 5, 313.
[21]
Lin, Y.; Huang, X.; Liu, Y. C.; Cao, D.; Lu, D. W.; Feng, Z. M.; Liu, Q.; Liu, Z. Y.; Jiang, G. B. Anal. Chem. 2021, 93, 6665.
[22]
Deng, L. L.; Zhang, K. S.; Yin, Z. Y.; Li, X. Y.; Wu, W. Q.; Xiang, X. P. Environ. Sci. 2020, 41, 5276. (in Chinese)
[22]
(邓林俐, 张凯山, 殷子渊, 李欣悦, 武文琪, 向锌鹏, 环境科学, 2020, 41, 5276.)
[23]
Wang, Z. Y.; Li, Y. B.; Guo, L.; Song, Z. Q.; Xu, Y. L.; Wang, F.; Liang, W. Q.; Shi, G. L.; Feng, Y. C. Environ. Sci. 2022, 43, 608. (in Chinese)
[23]
(王振宇, 李永斌, 郭凌, 宋志强, 许艳玲, 王丰, 梁维青, 史国良, 冯银厂, 环境科学, 2022, 43, 608.)
[24]
Qi, W. H.; Dao, X.; Lv, Y. B.; Wang, C. Environ. Chem. 2016, 35, 2521. (in Chinese)
[24]
(齐炜红, 刀谞, 吕怡兵, 王超, 环境化学, 2016, 35, 2521.)
[25]
He, L. Y.; Hu, M.; Huang, X. F.; Zhang, Y. H. Acta Sci. Circum. 2005, 25, 23. (in Chinese)
[25]
(何凌燕, 胡敏, 黄晓峰, 张远航, 环境科学学报, 2005, 25, 23.)
[26]
Walder, A. J.; Platzner, I.; Freedman, P. A. J. Anal. At. Spectrom. 1993, 8, 19.
[27]
Wiederhold, J. G. Environ. Sci. Technol. 2015, 49, 2606.
[28]
Lu, D. W.; Zhang, T. Y.; Yang, X. Z.; Su, P.; Liu, Q.; Jiang, G. B. J. Anal. At. Spectrom. 2017, 32, 1848.
[29]
Basile Doelsch, I.; Meunier, J. D.; Parron, C. Nature 2005, 433, 399.
[30]
Zuo, P. J.; Zong, Z.; Zheng, B.; Bi, J. Z.; Zhang, Q. H.; Li, W.; Zhang, J.; Yang, X. Z.; Chen, Z. G.; Yang, H.; Lu, D. W.; Zhang, Q. H.; Liu, Q.; Jiang, G. B. Environ. Sci. Technol. 2021, 56, 155.
[31]
Yang, X. Z.; Lu, D. W.; Tan, J. H.; Sun, X.; Zhang, Q. H.; Zhang, L. Y.; Li, Y.; Wang, W. C.; Liu, Q.; Jiang, G. B. Environ. Sci. Technol. 2020, 54, 7126.
[32]
Su, P.; Lu, D. W.; Yang, X. Z.; Wang, W. C.; Liu, Q.; Jiang, G. B. Sci. China: Chem. 2018, 48, 1163. (in Chinese)
[32]
(苏鹏, 陆达伟, 杨学志, 王伟超, 刘倩, 江桂斌, 中国科学: 化学, 2018, 48, 1163.)
[33]
Lu, D. W.; Liu, Q.; Zhang, T. Y.; Cai, Y.; Yin, Y. G.; Jiang, G. B. Nat. Nanotechnol. 2016, 11, 682.
[34]
Zhang, T. Y.; Lu, D. W.; Zeng, L. X.; Yin, Y. G.; He, Y. J.; Liu, Q.; Jiang, G. B. Environ. Sci. Technol. 2017, 51, 14164.
[35]
Yang, X. Z.; Liu, X.; Zhang, A. Q.; Lu, D. W.; Li, G.; Zhang, Q. H.; Liu, Q.; Jiang, G. B. Nat. Commun. 2019, 10, 1620.
[36]
Gibson, N.; Holzwarth, U.; Abbas, K.; Simonelli, F.; Kozempel, J.; Cydzik, I.; Cotogno, G.; Bulgheroni, A.; Gilliland, D.; Ponti, J.; Franchini, F.; Marmorato, P.; Stamm, H.; Kreyling, W.; Wenk, A.; Semmler-Behnke, M.; Buono, S.; Maciocco, L.; Burgio, N. Arch. Toxicol. 2011, 85, 751.
[37]
Deline, A. R.; Nason, J. A. Environ. Sci. Nano 2019, 6, 1043.
[38]
Zhang, P.; Misra, S.; Guo, Z. L.; Rehkamper, M.; Valsami-Jones, E. Nat. Protoc. 2019, 14, 2878.
[39]
Yin, Y. G.; Tan, Z. Q.; Hu, L. G.; Yu, S. J.; Liu, J. F.; Jiang, G. B. Chem. Rev. 2017, 117, 4462.
[40]
Yu, S. J.; Lai, Y. J.; Dong, L. J.; Liu, J. F. Environ. Sci. Technol. 2019, 53, 10218.
[41]
Shao, Z. S.; Guagliardo, P.; Jiang, H. B.; Wang, W. X. Environ. Sci. Technol. 2021, 55, 433.
[42]
Yang, Q. Q.; Shan, W. Y.; Hu, L. G.; Zhao, Y.; Hou, Y. Z.; Yin, Y. G.; Liang, Y.; Wang, F. Y.; Cai, Y.; Liu, J. F.; Pang, G. B. Environ. Sci. Technol. 2019, 53, 625.
[43]
Nath, J.; Dror, I.; Landa, P.; Vanek, T.; Kaplan Ashiri, I.; Berkowitz, B. Environ. Pollut. 2018, 242, 1827.
[44]
Lammel, T.; Thit, A.; Cui, X. J.; Mouneyrac, C.; Baun, A.; Valsami Jones, E.; Sturve, J.; Selck, H. Environ. Sci. Nano 2020, 7, 2360.
[45]
Mahler, B. J.; Winkler, M.; Bennett, P.; Hillis, D. M. Geology 1998, 26, 831.
[46]
Liao, R. K.; Zhao, F.; Hamada, S.; Yang, P. L.; Xu, H.; Luo, D.; Yang, D. Y. Nano Today 2020, 35, 100958.
[47]
Liao, R. K.; Yang, P. L.; Wu, W. Y.; Luo, D.; Yang, D. Y. Environ. Sci. Technol. 2018, 52, 1695.
[48]
Mikutis, G.; Deuber, C. A.; Schmid, L.; Kittila, A.; Lobsiger, N.; Puddu, M.; Asgeirsson, D. O.; Grass, R. N.; Saar, M. O.; Stark, W. J. Environ. Sci. Technol. 2018, 52, 12142.
[49]
Grass, R. N.; Schälchli, J.; Paunescu, D.; Soellner, J. O. B.; Kaegi, R.; Stark, W. J. Environ. Sci. Technol. Lett. 2014, 1, 484.
[50]
Mitrano, D. M.; Beltzung, A.; Frehland, S.; Schmiedgruber, M.; Cingolani, A.; Schmidt, F. Nat. Nanotechnol. 2019, 14, 362.
Outlines

/