Solution Small-Angle Scattering in Soft Matter: Application and Prospective※
Received date: 2021-12-31
Online published: 2022-03-08
Supported by
National Natural Science Foundation of China(U1832144); Youth Innovation Promotion Association of Chinese Academy of Sciences(2017319); Natural Science Foundation of Shanghai(21ZR1471600)
Solution small-angle scattering (SAS) is a powerful tool for elucidating the structural properties of soft matter systems. SAS includes X-ray scattering (SAXS) and Neutron scattering (SANS) techniques which allow determination of the material’s properties at a scale ranging from few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to several minutes can be also covered by these techniques. In recent years, solution SAS techniques have had versatile applications in several research fields, especially in structural biology and in probing self-assembling nanomaterials. Probing the structure of materials at micro- and nano-scales provide an insight on the macroscopic properties of the material. The high throughput and fast time resolution offered by SAXS in combination with the neutron penetrating ability in SANS can offer a great potential to cover different soft-matter systems and processes (i.e. probing the kinetic of self-assembly). Here we review the solution SAS (both synchrotrons and Neutron Sources) capabilities which have been established in mainland China, and cover scattering theoretical developments. Recent advances in solutions SAS used in soft matter will also be discussed. Given the potential offered by the next generation X-ray and Neutron sources, further developments in this field are expected, with a proliferation of solution SAS applications.
Key words: solution SAXS; solution SANS; soft matter; high-throughput; structural dynamics
Panqi Song , Jianqiao Zhang , Yiwen Li , Guangfeng Liu , Na Li . Solution Small-Angle Scattering in Soft Matter: Application and Prospective※[J]. Acta Chimica Sinica, 2022 , 80(5) : 690 -702 . DOI: 10.6023/A21120624
[1] | Hamley, I. W. Introduction to Soft Matter: Synthetic and Biological Self-Assembling Materials, Revised Edition, Wiley, Chichester, UK, 2013, 13, 3. |
[2] | de Gennes, P. G. Science 1992, 64, 645. |
[3] | Narayanan, T.; Wacklin, H.; Konovalov, O.; Lund, R. Crystallogr. Rev. 2017, 23, 160. |
[4] | Campbell, E. C.; Correy, G. J.; Mabbitt, P. D.; Buckle, A. M.; Tokuriki, N.; Jackson, C. J. Curr. Opin. Struct. Biol. 2018, 50, 49. |
[5] | Li, M.; Mukhopadhyay, R.; Svoboda, V.; Oung, H. M. O.; Mullendore, D. L.; Kirchhoff, H. Plant. Direct. 2020, 4, e00280. |
[6] | Engel, B. D.; Schaffer, M.; Kuhn Cuellar, L.; Villa, E.; Plitzko, J. M.; Baumeister, W. Elife 2015, 4, e04889. |
[7] | Mazur, R.; Mostowska, A.; Szach, J.; Gieczewska, K.; Wojtowicz, J.; Bednarska, K.; Garstka, M.; Kowalewska, L. J. Exp. Bot. 2019, 70, 4689. |
[8] | Koch, M. H.; Vachette, P.; Svergun, D. Q. Rev. Biophys. 2003, 36, 147. |
[9] | Lombardo, D.; Calandra, P.; Kiselev, M. Molecules 2020, 25, 5624. |
[10] | Hura, G. L.; Menon, A. L.; Hammel, M.; Rambo, R. P.; Poole, F. L., 2nd; Tsutakawa, S. E.; Jenney, F. E.; Jr |
[11] | Perera, S.; Chawla, U.; Shrestha, U. R.; Bhowmik, D.; Struts, A. V.; Qian, S.; Chu, X. Q.; Brown, M. F. J. Phys. Chem. Lett. 2018, 9, 7064. |
[12] | Guinier, A. Phys. Today 1969, 22, 25. |
[13] | Nagar, B.; Kuriyan, J. Structure 2005, 13, 169. |
[14] | Perez, J.; Nishino, Y. Curr. Opin. Struct. Biol. 2012, 22, 670. |
[15] | Liu, L.; Boldon, L.; Urquhart, M.; Wang, X. J. Vis. Exp. 2013, 71, e4160. |
[16] | Round, A.; Felisaz, F.; Fodinger, L.; Gobbo, A.; Huet, J.; Villard, C.; Blanchet, C. E.; Pernot, P.; McSweeney, S.; Roessle, M.; Svergun, D. I.; Cipriani, F. Acta Crystallogr. D. Biol. Crystallogr. 2015, 71, 67. |
[17] | Liu, G.; Li, Y.; Wu, H.; Wu, X.; Xu, X.; Wang, W.; Zhang, R.; Li, N. J. Appl. Crystallogr. 2018, 51, 1633. |
[18] | Li, Y.-W.; Liu, G.-F.; Wu, H.-J.; Zhou, P.; Hong, C.-X.; Li, N.; Bian, F.-G. Nucl. Sci. Tech. 2020, 31, 116. |
[19] | Wang, Y.; Zhou, H.; Onuk, E.; Badger, J.; Makowski, L. Adv. Exp. Med. Biol. 2017, 1009, 131. |
[20] | Kwok, L. W.; Shcherbakova, I.; Lamb, J. S.; Park, H. Y.; Andresen, K.; Smith, H.; Brenowitz, M.; Pollack, L. J. Mol. Biol. 2006, 355, 282. |
[21] | Lamb, J.; Kwok, L.; Qiu, X.; Andresen, K.; Park, H. Y.; Pollack, L. J. Appl. Crystallogr. 2008, 41, 1046. |
[22] | Ansari, M. A.; Kim, K.-Y.; Anwar, K.; Kim, S. M. J. Micromech. Microeng. 2010, 20, 055007. |
[23] | Rai, D. K.; Gillilan, R. E.; Huang, Q.; Miller, R.; Ting, E.; Lazarev, A.; Tate, M. W.; Gruner, S. M. J. Appl. Crystallogr. 2021, 54, 111. |
[24] | Gruzinov, A. Y.; Schroer, M. A.; Manalastas-Cantos, K.; Kikhney, A. G.; Hajizadeh, N. R.; Schulz, F.; Franke, D.; Svergun, D. I.; Blanchet, C. E. J. Synchrotron. Radiat. 2021, 28, 812. |
[25] | Li, Y.-W.; Bian, F.-G.; Wang, J. Nucl. Sci. Tech. 2016, 27, 920. |
[26] | Narayanan, T.; Konovalov, O. Materials (Basel) 2020, 13, 752. |
[27] | Luoxi, T.; James, G.; Brian, H.; Elizabeth, G.; Jonathan, N. J. Appl. Crystallogr. 2021, 54, 363. |
[28] | Ingo, B.; Joachim, K.; Thünemann, A. J. Appl. Crystallogr. 2015, 48, 1587. |
[29] | Karen, M.; Petr, V.; Nelly, R.; Alexey, G.; Maxim, V.; Dmitry, S.; Alejandro, P.; Haydyn, D.; Andrey, G.; Clemente, B.; Cy, M.; Dmitri, I. S.; Daniel, F. J. Appl. Crystallogr. 2021, 54, 343. |
[30] | Panjkovich, A.; Svergun, D. I. Bioinformatics 2018, 34, 1944. |
[31] | Hammouda, B. Probing Nanoscale Structures-The SANS Toolbox, National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, 2010, pp. 210-225. |
[32] | Grant, T. D. Nat. Methods 2018, 15, 191. |
[33] | Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196. |
[34] | Ogi, S.; Sugiyasu, K.; Manna, S.; Samitsu, S.; Takeuchi, M. Nat. Chem. 2014, 6, 188. |
[35] | Prabhu, D. D.; Aratsu, K.; Kitamoto, Y.; Ouchi, H.; Ohba, T.; Hollamby, M. J.; Shimizu, N.; Takagi, H.; Haruki, R.; Adachi, S. I.; Yagai, S. Sci. Adv. 2018, 4, eaat8466. |
[36] | Poon, J. K.; Chen, Z.; Leung, S. Y.; Leung, M. Y.; Yam, V. W. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2022829118. |
[37] | Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813. |
[38] | Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Nat. Mater. 2016, 15, 13. |
[39] | Zhang, Q.; Deng, Y. X.; Luo, H. X.; Shi, C. Y.; Geise, G. M.; Feringa, B. L.; Tian, H.; Qu, D. H. J. Am. Chem. Soc. 2019, 141, 12804. |
[40] | Thanh, N. T.; Maclean, N.; Mahiddine, S. Chem. Rev. 2014, 114, 7610. |
[41] | Liu, Y. B.; Yang, R. H.; Pelster, T.; Lee, T. T.; Wang, Y. J.; Hong, C. X.; Luo, G. S. J. Phys. Chem. C 2020, 124, 21853. |
[42] | Lai, Y.; Zhang, M.; Yu, H.; Wang, W.; Yin, P. Polym. Compos. 2019, 41, 306. |
[43] | Li, M.; Zhang, M.; Lai, Y.; Liu, Y.; Halbert, C.; Browning, J. F.; Liu, D.; Yin, P. J. Phys. Chem. C 2020, 124, 15656. |
[44] | Lai, Y.; Li, M.; Zhang, M.; Li, X.; Yuan, J.; Wang, W.; Zhou, Q.; Huang, M.; Yin, P. Macromolecules 2020, 53, 7178. |
[45] | Yin, J. F.; Zheng, Z.; Yang, J.; Liu, Y.; Cai, L.; Guo, Q. Y.; Li, M.; Li, X.; Sun, T. L.; Liu, G. X.; Huang, C.; Cheng, S. Z. D.; Russell, T. P.; Yin, P. Angew. Chem., Int. Ed. 2021, 60, 4894. |
[46] | Heftberger, P.; Kollmitzer, B.; Heberle, F. A.; Pan, J.; Rappolt, M.; Amenitsch, H.; Kucerka, N.; Katsaras, J.; Pabst, G. J. Appl. Crystallogr. 2014, 47, 173. |
[47] | Ye, Y. N.; Cui, K.; Hong, W.; Li, X.; Yu, C.; Hourdet, D.; Nakajima, T.; Kurokawa, T.; Gong, J. P. Nat. Acad. Sci. U. S. A. 2021, 118, e2014694118. |
[48] | Bonaccorsi, L.; Calandra, P.; Kiselev, M. A.; Amenitsch, H.; Proverbio, E.; Lombardo, D. Langmuir 2013, 29, 7079. |
[49] | Wang, M.; Dai, L.; Duan, J.; Ding, Z.; Wang, P.; Li, Z.; Xing, H.; Tian, Y. Angew. Chem., nt. Ed. 2020, 59, 6389. |
[50] | Petoukhov, M. V.; Svergun, D. I. Curr. Opin. Struct. Biol. 2007, 17, 562. |
[51] | Gilman, B.; Tijerina, P.; Russell, R. Biochem. Soc. Trans. 2017, 45, 1313. |
[52] | Tria, G.; Mertens, H. D.; Kachala, M.; Svergun, D. I. IUCrJ 2015, 2, 207. |
[53] | Ma, J.; Cheng, X.; Xu, Z.; Zhang, Y.; Valle, J.; Fan, S.; Zuo, X.; Lasa, I.; Fang, X. EMBO J. 2021, 40, 3510. |
[54] | Zhang, B.; Li, J.; Yang, X.; Wu, L.; Zhang, J.; Yang, Y.; Zhao, Y.; Zhang, L.; Yang, X.; Yang, X.; Cheng, X.; Liu, Z.; Jiang, B.; Jiang, H.; Guddat, L. W.; Yang, H.; Rao, Z. Cell 2019, 176, 636. |
[55] | Cui, W.; Braun, E.; Wang, W.; Tang, J.; Zheng, Y.; Slater, B.; Li, N.; Chen, C.; Liu, Q.; Wang, B.; Li, X.; Duan, Y.; Xiao, Y.; Ti, R.; Hotter, D.; Ji, X.; Zhang, L.; Cui, J.; Xiong, Y.; Sauter, D.; Wang, Z.; Kirchhoff, F.; Yang, H. Proc. Nat. Acad. Sci. U. S. A. 2021, 118, e2022269118. |
[56] | Chen, Z.; Li, Z.; Hu, X.; Xie, F.; Kuang, S.; Zhan, B.; Gao, W.; Chen, X.; Gao, S.; Li, Y.; Wang, Y.; Qian, F.; Ding, C.; Gan, J.; Ji, C.; Xu, X. W.; Zhou, Z.; Huang, J.; He, H. H.; Li, J. Adv. Sci (Weinh). 2020, 7, 2000532. |
[57] | Zhang, Y.; Zhang, Y.; Liu, Z.; Cheng, M.; Ma, J.; Wang, Y.; Qin, C.; Fang, X. EMBO Rep. 2019, 20, e47016. |
[58] | Brezski, R. J.; Georgiou, G. Curr. Opin. Immunol. 2016, 40, 62. |
[59] | Liu, X.; Zhao, Y.; Shi, H.; Zhang, Y.; Yin, X.; Liu, M.; Zhang, H.; He, Y.; Lu, B.; Jin, T.; Li, F. Nat. Commun. 2019, 10, 4206. |
[60] | Guan, D.; Kao, H. Y. Cell Biosci. 2015, 5, 60. |
[61] | Bernardi, R.; Pandolfi, P. Nat. Rev. Mol. Cell Biol. 2007, 8, 1006. |
[62] | Li, Y.; Ma, X.; Chen, Z.; Wu, H.; Wang, P.; Wu, W.; Cheng, N.; Zeng, L.; Zhang, H.; Cai, X.; Chen, S. J.; Chen, Z.; Meng, G. Nat. Commun. 2019, 10, 3789. |
[63] | Josts, I.; Gao, Y.; Monteiro, D. C. F.; Niebling, S.; Nitsche, J.; Veith, K.; Grawert, T. W.; Blanchet, C. E.; Schroer, M. A.; Huse, N.; Pearson, A. R.; Svergun, D. I.; Tidow, H. Structure 2020, 28, 348. |
[64] | Mezzenga, R.; Schurtenberger, P.; Burbidge, A.; Michel, M. Nat. Mater. 2005, 4, 729. |
[65] | Pan, D. D.; Jane, J. I. Biomacromolecules 2000, 1, 126. |
[66] | Blazek, J.; Gilbert, E. P. Carbohyd. Polym. 2011, 85, 281. |
[67] | Donald, A. M.; Kato, K. L.; Perry, P. A.; Weigh, T. A. Starch-Starke 2001, 53, 504. |
[68] | Zhang, B.; Xie, F.; Wang, D. K.; Zhao, S.; Niu, M.; Qiao, D.; Xiong, S.; Jiang, F.; Zhu, J.; Yu, L. Carbohydr. Polym. 2017, 158, 29. |
[69] | Vella, J.; Hemar, Y.; Gu, Q. F.; Wu, Z. R.; Li, N.; Sohnel, T. Lwt-Food Sci. Technol. 2021, 135, 110174. |
[70] | Sun, Y.; Tai, Z.; Yan, T.; Dai, Y.; Hemar, Y.; Li, N. Food Res. Int. 2021, 149, 110653. |
[71] | Matsumoto, M.; Saito, S.; Ohmine, I. Nature 2002, 416, 409. |
[72] | Fitzner, M.; Sosso, G. C.; Pietrucci, F.; Pipolo, S.; Michaelides, A. Nat. Commun. 2017, 8, 2257. |
[73] | Bai, G.; Gao, D.; Liu, Z.; Zhou, X.; Wang, J. Nature 2019, 576, 437. |
[74] | Zhang, S.; Han, J.; Luo, X.; Wang, Z.; Gu, X.; Li, N.; de Souza, N. R.; Garcia Sakai, V.; Chu, X. Q. Struct. Dyn. 2021, 8, 054901. |
[75] | Qian, X.; Han, D.; Zheng, L.; Chen, J.; Tyagi, M.; Li, Q.; Du, F.; Zheng, S.; Huang, X.; Zhang, S.; Shi, J.; Huang, H.; Shi, X.; Chen, J.; Qin, H.; Bernholc, J.; Chen, X.; Chen, L. Q.; Hong, L.; Zhang, Q. M. Nature 2021, 600, 664. |
/
〈 |
|
〉 |