Article

Study on the Framework Aluminum Distributions of HMOR Zeolite and Identification of Active Sites for Dimethyl Ether Carbonylation Reaction

  • Jin Zhang ,
  • Xiangnong Ding ,
  • Hongchao Liu ,
  • Dong Fan ,
  • Shutao Xu ,
  • Yingxu Wei ,
  • Zhongmin Liu
Expand
  • a National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023
    b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023
    c School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2022-01-09

  Online published: 2022-03-11

Supported by

National Natural Science Foundation of China(21972142); National Natural Science Foundation of China(22022202); National Natural Science Foundation of China(21991092); National Natural Science Foundation of China(21991090); Dalian Outstanding Young Scientist Foundation(2021RJ01); Key Research Program of Frontier Sciences, Chinese Academy of Sciences(QYZDY-SSW-JSC024); International Partnership Program of Chinese Academy of Sciences(121421KYSB20180007)

Abstract

HMOR zeolites has an excellent performance similar to enzyme catalysis in the carbonylation of dimethyl ether (DME). The distribution of framework aluminum and the identification of the active site of the reaction are the key issues in the study of the reaction mechanism. The early work was based on theoretical calculation to study the active site of DME carbonylation, but lacked direct experimental evidence. In this work, a series of HMOR catalysts were prepared by calcination of NH4MOR at various temperatures. The stability and location of framework aluminum were studied by a variety of spectroscopic characterization methods. Moreover, the evidence of reaction mechanism was obtained by the carbonylation reaction activity of dimethyl ether related to the acidity of MOR zeolite and aluminum distribution. Firstly, it was found that the crystallinity and morphology of MOR zeolites did not change significantly after calcination at different temperatures by XRD (X-Ray diffraction) and SEM (Scanning electron microscope). However, it was found by 29Si, 27Al and 1H Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) that the local environment of HMORs was dealuminated, which resulted in obvious defect hydroxyl groups and the decrease of Brönsted acid sites (BASs) content. In addition, the calcination temperature has a great influence on the stability of framework Al of HMORs. Increase of calcination temperature will accelerate the occurrence of dealumination. Quantitative 1H MAS NMR combined with Fourier transform infrared spectra (FTIR) provided the distribution of BASs content in different channels of HMOR zeolites. By using 2D 27Al multiple quantum (MQ) MAS NMR method combined with the representative slices parallel to the F2 dimension of MQMAS NMR spectra at selected F1 chemical shift to distinguish the framework Al sites, it was found that when the temperature was lower than 600 ℃, framework Al atoms located in the different T-sites had the similar dealumination rate. But when the calcination temperature was increased to 600 ℃, the removal rate of Al atom at T3 site was accelerated. Furthermore, the relationship between the carbonylation performance of dimethyl ether and the distribution of Brønsted acid and aluminum was studied, and the definitive spectral evidence of the carbonylation activity center was obtained, that is, the Al site at T3-O33 was the active site of the carbonylation reaction.

Cite this article

Jin Zhang , Xiangnong Ding , Hongchao Liu , Dong Fan , Shutao Xu , Yingxu Wei , Zhongmin Liu . Study on the Framework Aluminum Distributions of HMOR Zeolite and Identification of Active Sites for Dimethyl Ether Carbonylation Reaction[J]. Acta Chimica Sinica, 2022 , 80(5) : 590 -597 . DOI: 10.6023/A22010014

References

[1]
Sun, D.; Sun, B.; Pei, Y.; Yan, S. R.; Fan, K. N.; Qiao, M. H.; Zhang, X. X.; Zong, B. N. Acta Chim. Sinica 2021, 79, 771. (in Chinese)
[1]
(孙冬, 孙博, 裴燕, 闫世润, 范康年, 乔明华, 张晓昕, 宗保宁, 化学学报, 2021, 79, 771.)
[2]
Zhang, M. T.; Yan, T. T.; Dai, W. L.; Guan, N. J.; Li, L. D. Acta Chim. Sinica 2020, 78, 1404. (in Chinese)
[2]
(张梦婷, 颜婷婷, 戴卫理, 关乃佳, 李兰冬, 化学学报, 2020, 78, 1404.)
[3]
Yao, X. T.; Huang, X.; Lin, Y. X.; Liu, Y. M. Acta Chim. Sinica 2020, 78, 1111. (in Chinese)
[3]
(姚旭婷, 黄鑫, 林玉霞, 刘月明, 化学学报, 2020, 78, 1111.)
[4]
Liu, Y. H.; Zhao, N.; Xian, H.; Cheng, Q. P.; Tan, Y. S.; Tsubaki, N.; Li, X. G. ACS Appl. Mater. Inter. 2015, 7, 8398.
[5]
Li, Y.; Sun, Q.; Huang, S. Y.; Cheng, Z. Z.; Cai, K.; Lv, J.; Ma, X. B. Catal. Today 2018, 311, 81.
[6]
Zhao, N.; Cheng, Q. P.; Lyu, S. S.; Guo, L. H.; Tian, Y.; Ding, T.; Xu, J.; Ma, X. B.; Li, X. G. Catal. Today. 2020, 339, 86.
[7]
Huo, H.; Peng, L. M.; Gan, Z. H.; Grey, C. P. J. Am. Chem. Soc. 2012, 134, 9708.
[8]
Lukyanov, D. B.; Vazhnova, T.; Cherkasov, N.; Casci, J. L.; Birtill, J. J. J. Phys. Chem. C 2014, 118, 23918.
[9]
Cai, K.; Huang, S. Y.; Li, Y.; Cheng, Z. Z.; Lv, J.; Ma, X. B. ACS Sustain. Chem. Eng. 2019, 7, 2027.
[10]
Yi, X. F.; Xiao, Y.; Li, G. C.; Liu, Z. Q.; Chen, W.; Liu, S. B.; Zheng, A. M. Chem. Mater. 2020, 32, 1332.
[11]
Gong, K.; Liu, Z. M.; Liang, L. X.; Zhao, Z. C.; Guo, M. L.; Liu, X. B.; Han, X. W.; Bao, X. H.; Hou, G. J. J. Phys. Chem. Lett. 2021, 12, 2413.
[12]
Cao, K. P.; Fan, D.; Gao, M. B.; Fan, B. H.; Chen, N.; Wang, L. Y.; Tian, P.; Liu, Z. M. ACS Catal. 2021, 12, 1.
[13]
Bajpai, P. K. Zeolites 1986, 6, 2.
[14]
Bajpai, P. K.; Rao, M. S.; Gokhale, K. V. G. K. Ind. Eng. Chem. Prod. Res. Dev. 1981, 20, 721.
[15]
Bhan, A.; Allian, A. D.; Sunley, G. J.; Law, D. J.; Iglesia, E. J. Am. Chem. Soc. 2007, 129, 4919.
[16]
Boronat, M.; Martinez-Sanchez, C.; Law, D.; Corma, A. J. Am. Chem. Soc. 2008, 130, 16316.
[17]
Cheung, P.; Bhan, A.; Sunley, G. J.; Iglesia, E. Angew. Chem., Int. Ed. 2006, 45, 1617.
[18]
Cheung, P.; Bhan, A.; Sunley, G.; Law, D.; Iglesia, E. J. Catal. 2007, 245, 110.
[19]
Jiang, Y. J.; Hunger, M.; Wang, W. J. Am. Chem. Soc. 2006, 128, 11679.
[20]
Chu, Y. Y.; Lo, A. Y.; Wang, C.; Deng, F. J. Phys. Chem. C 2019, 123, 15503.
[21]
Blasco, T.; Boronat, M.; Concepcion, P.; Corma, A.; Law, D.; Vidal-Moya, J. A. Angew. Chem., Int. Ed. 2007, 46, 3938.
[22]
He, T.; Ren, P. J.; Liu, X. C.; Xu, S. T.; Han, X. W.; Bao, X. H. Chem. Commun. 2015, 51, 16868.
[23]
Li, B. J.; Xu, J.; Han, B.; Wang, X. M.; Qi, G. D.; Zhang, Z. F.; Wang, C.; Deng, F. J. Phys. Chem. C 2013, 117, 5840.
[24]
Xue, H. F.; Huang, X. M.; Ditzel, E.; Zhan, E. S.; Ma, M.; Shen, W. J. Ind. Eng. Chem. Res. 2013, 52, 11510.
[25]
Wang, S. R.; Guo, W. W.; Zhu, L. J.; Wang, H. X.; Qiu, K. Z.; Cen, K. F. J. Phys. Chem. C 2014, 119, 524.
[26]
Liu, S. P.; Liu, H. C.; Ma, X. G.; Liu, Y.; Zhu, W. L.; Liu, Z. M. Catal. Sci. Technol. 2020, 10, 4663.
[27]
Cao, K. P.; Fan, D.; Li, L. Y; Fan, B. H.; Wang, L. Y.; Zhu, D. L.; Wang, Q. Y.; Tian, P.; Liu, Z. M. ACS Catal. 2020, 10, 3372.
[28]
Wang, X. S.; Li, R. J.; Yu, C. C.; Liu, Y. X.; Zhang, L. Y.; Xu, C. M.; Zhou, H. J. Fuel 2019, 239, 794.
[29]
Reule, A. A. C.; Sawada, J. A.; Sema gina, N. J. Catal. 2017, 349, 98.
[30]
Li, Y.; Li, Z. H.; Huang, S. Y.; Cai, K.; Qu, Z.; Zhang, J. F.; Wang, Y.; Ma, X. B. ACS Appl. Mater. Inter. 2019, 11, 24000.
[31]
Paul, G.; Bisio, C.; Braschi, I.; Cossi, M.; Gatti, G.; Gianotti, E.; Marchese, L. Chem. Soc. Rev. 2018, 47, 5684.
[32]
Chen, X.; Fu, Y. Y.; Yue, B.; He, H. Y. Chin. J. Magn. Reson. 2021, 38, 491. (in Chinese)
[32]
(陈欣, 付颖懿, 岳斌, 贺鹤勇, 波谱学杂志, 2021, 38, 491.)
[33]
Gao, S. S.; Xu, S. T.; Wei, Y. X.; Liu, Z. M. Chin. J. Magn. Reson. 2021, 38, 433. (in Chinese)
[33]
(高树树, 徐舒涛, 魏迎旭, 刘中民, 波谱学杂志, 2021, 38, 433.)
[34]
Xao, Y.; Xia, C. J.; Yi, X. F.; Liu, F. Q.; Liu, S. B.; Zheng, A. M. Chin. J. Magn. Reson. 2021, 38, 571. (in Chinese)
[34]
肖瑶, 夏长久, 易先锋, 刘凤庆, 刘尚斌, 郑安民, 波谱学杂志, 2021, 38, 571.)
[35]
Chen, H. D.; Kong, H. Y.; Zhao, Z. C.; Zhang, W. P. Chin. J. Magn. Reson. 2021, 38, 543. (in Chinese)
[35]
(陈翰迪, 孔海宇, 赵侦超, 张维萍, 波谱学杂志, 2021, 38, 543.)
[36]
Yang, W. J.; Huang, J. Chin. J. Magn. Reson. 2021, 38, 460. (in Chinese)
[36]
(杨文杰, 黄骏, 波谱学杂志, 2021, 38, 460.)
[37]
Wang, Y. X. Wang, Q.; Xu, J.; Xia, Q. H.; Deng, F. Chin. J. Magn. Reson. 2021, 38, 514. (in Chinese)
[37]
(王永祥, 王强, 徐君, 夏清华, 邓风, 波谱学杂志, 2021, 38, 514.)
[38]
Xia, X. F.; Zhang, W. J.; Lin, Z. Y.; Ke, X. K.; Wen, Y. J.; Wang, F.; Chen, J. C.; Peng, L. M. Chin. J. Magn. Reson. 2021, 38, 533. (in Chinese)
[38]
(夏锡锋, 张文静, 林芝晔, 柯晓康, 温玉洁, 王芳, 陈俊超, 彭路明, 波谱学杂志, 2021, 38, 533.)
[39]
Fyfe, C. A.; Gobbi, G. C.; Murphy, W. J.; Ozubko, R. S.; Slack, D. A. J. Am. Chem. Soc. 1984, 106, 4435.
[40]
Yokoi, T.; Mochizuki, H.; Namba, S.; Kondo, J. N.; Tatsumi, T. J. Phys. Chem. C 2015, 119, 15303.
[41]
Kneller, J. M.; Pietraß, T.; Ott, K. C.; Labouriau, A. Micropor. Mesopor. Mater. 2003, 62, 121.
[42]
Ravi, M.; Sushkevich, V. L.; van Bokhoven, J. A. Chem. Sci. 2021, 12, 4094.
[43]
Medek, A.; Harwood, J. S.; Frydman, L. J. Am. Chem. Soc. 1995, 117, 12779.
[44]
Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z. H.; Hoatson, G. Magn. Reason. Chem. 2002, 40, 70.
[45]
Hu, J. Z.; Wan, C.; Vjunov, A.; Wang, M.; Zhao, Z. C.; Hu, M. Y.; Camaioni, D. M.; Lercher, J. A. J. Phys. Chem. C. 2017, 121, 12849.
[46]
Frydman, L.; Harwood, J. S. J. Am. Chem. Soc. 1995, 117, 5367.
[47]
Sarv, P.; Tuherm, T.; Lippmaa, E.; Keskinen, K.; Root, A. J. Phys. Chem. 1995, 99, 13763.
[48]
Maache, M.; Janin, A.; Lavalley, J. C.; Benazzi, E. Zeolites 1995, 15, 507.
[49]
Pastvova, J.; Pilar, R.; Moravkova, J.; Kaucky, D.; Rathousky, J.; Sklenak, S.; Sazama, P. Appl. Catal. A. 2018, 562, 159.
[50]
Wakabayashi, F.; Kondo, J.; Wada, A.; Domen, K.; Hirose, C. J. Phys. Chem. 1996, 100, 4154.
[51]
Zholobenko, V. L.; Makarova, M. A.; Dwyer, J. J. Phys. Chem. 2002, 97, 5962.
[52]
Engelhardt, G.; Kentgens, A. P. M.; Koller, H.; Samoson, A. Solid State Nucl. Magn. Reson. 1999, 15, 171.
[53]
Liu, R. S.; Fan, B. H.; Zhang, W. N.; Wang, Y. L.; Qi, L.; Xu, S. T.; Yu, Z. X.; Wei, Y. X.; Liu, Z. M. Angew. Chem., Int. Ed. 2022, e202116990.
[54]
Jeffroy, M.; Nieto-Draghi, C.; Boutin, A. Chem. Mater. 2017, 29, 513.
[55]
Chen, K.; Horstmeier, S.; Nguyen, V. T.; Wang, B.; Crossley, S. P.; Pham, T.; Gan, Z.; Hung, I.; White, J. L. J. Am. Chem. Soc. 2020, 142, 7514.
[56]
Chen, K.; Gan, Z.; Horstmeier, S.; White, J. L. J. Am. Chem. Soc. 2021, 143, 6669.
[57]
Bodart, P.; Nagy, J. B.; Debras, G.; Gabelica, Z.; Jacobs, P. A. J. Phys. Chem. 1986, 90, 5183.
[58]
Debras, G.; Nagy, J. B.; Gabelica, Z.; Bodart, P.; Jacobs, P. A. Chem. Lett. 1983, 12, 199.
[59]
Schroeder, K. P.; Sauer, J. J. Phys. Chem. 1993, 97, 6579.
[60]
Amoureux, J. P.; Fernandez, C.; Steuernagel, S. J. Magn. Reson. A 1996, 123, 116.
Outlines

/