Article

Recognition and Luminescence Properties of N^C^N Pt(II) Complexes with Macrocyclic Host Cucurbit[10]uril

  • Shimin Zhu ,
  • Xin Huang ,
  • Xie Han ,
  • Simin Liu
Expand
  • School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081

Received date: 2022-02-20

  Online published: 2022-04-01

Supported by

National Natural Science Foundation of China(21871216); National Natural Science Foundation of China(21901194)

Abstract

Transition metal complexes have been widely studied due to their unique photophysical and chemical properties. In order to further explore the influence of host-guest interaction on luminescent property of Pt complexes, three different substituted water-soluble Pt complexes were designed and synthesized. Cucurbit[10]uril (CB[10]), with the largest cavity among the cucurbit[n]uril family, was selected as the host molecule. The 1H NMR titration experiments proved CB[10] binded three guests with 1∶2 stoichiometry, and the 1,3-di(2-pyridyl)benzene (N^C^N) ligand part on the guest molecule was encapsulated antiparallelly in the cavity of CB[10] in a head-to-tail manner. Mass spectrometry characterization further proved the binding between host and guest with 1∶2 stoichiometry. The low-energy absorption peaks of N^C^N Pt(II) complexes at >400 nm attributed to metal-metal-to-ligand charge transfer (MMLCT) were enhanced upon binding with CB[10]. Compared to free [2,6-di(2-pyridinyl)phenyl][3-(trimethylammonio)-1-propyn-1-yl]platinum(II) chloride (Pt-1), the 3IL emission intensity of its complex with CB[10] was enhanced dominantly. The [methyl 3,5-di(2-pyridyl)benzoato][3-(tri- methylammonio)-1-propyn-1-yl]platinum(II) chloride (Pt-2) showed visible red phosphorescence emission at 648 nm which was attributed to 3MMLCT in aqueous solution. Interestingly, binding with CB[10] led to a red-shift to 667 nm, which was closer to near-infrared emission. Besides, the phosphorescence lifetime is enhanced by 1.5 times (14.64 to 23.74 μs), and the quantum yield is enhanced by 15.6 times (2.7% to 42%) upon the host-guest complexation. The luminescent property of [4-methoxy-2,6-di(2-pyridinyl)phenyl][3-(trimethylammonio)-1-propyn-1-yl]platinum(II) chloride (Pt-3) was similar to that of Pt-2. Further research on the luminescence changes of Pt complexes before and after grinding in solid state indicated that the host-guest complex showed bigger red-shift of emission wavelength than free guest. The above results showed that the host-guest interactions based on CB[10] could shorten the distance between the platinum atoms of the two included guest molecules, thus enhancing metal-metal interaction and π-π interaction of the host-guest complexes.

Cite this article

Shimin Zhu , Xin Huang , Xie Han , Simin Liu . Recognition and Luminescence Properties of N^C^N Pt(II) Complexes with Macrocyclic Host Cucurbit[10]uril[J]. Acta Chimica Sinica, 2022 , 80(8) : 1066 -1070 . DOI: 10.6023/A22020078

References

[1]
(a) Wong, K. M.-C.; Yam, V. W.-W. Acc. Chem. Res. 2011, 44, 424.
[1]
(b) Lai, P.-N.; Brysacz, C. H.; Alam, M. K.; Ayoub, N. A.; Gray, T. G.; Bao, J.; Teets, T. S. J. Am. Chem. Soc. 2018, 140, 10198.
[2]
(a) Mauro, M.; Aliprandi, A.; Septiadi, D.; Kehr, N. S.; De Cola, L. Chem. Soc. Rev. 2014, 43, 4144.
[2]
(b) Chan, A. K.-W.; Ng, M.; Wong, Y.-C.; Chan, M.-Y.; Wong, W.-T.; Yam, V. W.-W. J. Am. Chem. Soc. 2017, 139, 10750.
[2]
(c) Lin, J.; Zou, C.; Zhang, X.; Gao, Q.; Suo, S.; Zhuo, Q.; Chang, X.; Xie, M.; Lu, W. Dalton Trans. 2019, 48, 10417.
[2]
(d) Allampally, N. K.; Bredol, M.; Strassert, C. A.; De Cola, L. Chem.-Eur. J. 2014, 20, 16863.
[3]
Li, K.; Ming Tong, G. S.; Wan, Q.; Cheng, G.; Tong, W.-Y.; Ang, W.-H.; Kwong, W.-L.; Che, C.-M. Chem. Sci. 2016, 7, 1653.
[4]
Chow, P.-K.; To, W.-P.; Low, K.-H.; Che, C.-M. Chem.-Asian J. 2014, 9, 534.
[5]
Wang, D.; Chen, Y.; Liu, X.; Bian, J.; Yin, X.; Teng, M.; Rong, M.; Wang, Z. Chin. J. Inorg. Chem. 2021, 37, 33. (in Chinese)
[5]
(王登强, 陈宇, 刘小庆, 卞健健, 尹新颖, 滕明瑜, 戎梅竹, 汪正良, 无机化学学报, 2021, 37, 33.)
[6]
Xu, G; Li, J.; Chen, Z. Acta Chim. Sinica 2014, 72, 667. (in Chinese)
[6]
(徐广涛, 李佳, 陈忠宁, 化学学报, 2014, 72, 667.)
[7]
Zhang, S.; Wang, S.; Zhou, X.; Zhang, H.; Shao, S.; Li, C. Acta Chim. Sinica 2008, 66, 841. (in Chinese)
[7]
(张首才, 王嵩, 周欣, 张红星, 邵琛, 李传碧, 化学学报, 2008, 66, 841.)
[8]
(a) Sun, C.-Y.; To, W.-P.; Hung, F.-F.; Wang, X.-L.; Su, Z.-M.; Che, C.-M. Chem. Sci. 2018, 9, 2357.
[8]
(b) Li, Z.; Han, Y.; Gao, Z.; Wang, F. ACS Catal. 2017, 7, 4676.
[9]
(a) Baggaley, E.; Botchway, S. W.; Haycock, J. W.; Morris, H.; Sazanovich, I. V.; Williams, J. A. G.; Weinstein, J. A. Chem. Sci. 2014, 5, 879.
[9]
(b) Ouyang, C.; Li, Y.; Rees, T. W.; Liao, X.; Jia, J.; Chen, Y.; Zhang, X.; Ji, L.; Chao, H. Angew. Chem., nt. Ed. 2021, 60, 4150.
[9]
(c) Law, A. S.-Y.; Lee, L. C.-C.; Lo, K. K.-W.; Yam, V. W.-W. J. Am. Chem. Soc. 2021, 143, 5396.
[10]
(a) Scoditti, S.; Dabbish, E.; Russo, N.; Mazzone, G.; Sicilia, E. Inorg. Chem. 2021, 60, 10350.
[10]
(b) Ramu, V.; Gautam, S.; Garai, A.; Kondaiah, P.; Chakravarty, A. R. Inorg. Chem. 2018, 57, 1717.
[11]
(a) Summa, G. M.; Scott, B. A. Inorg. Chem. 1980, 19, 1079.
[11]
(b) Yip, H.-K.; Cheng, L.-K.; Cheung, K.-K.; Che, C.-M. J. Chem. Soc., Dalton Trans. 1993, 2933.
[12]
(a) Yam, V. W.-W.; Tang, R. P.-L.; Wong, K. M.-C.; Cheung, K.-K. Organometallics 2001, 20, 4476.
[12]
(b) Du, P.; Schneider, J.; Jarosz, P.; Eisenberg, R. J. Am. Chem. Soc. 2006, 128, 7726.
[12]
(c) Yang, Z.; Tian, Y.; Li, Z.; Ao, L.; Gao, Z.; Wang, F. Acta Polym. Sin. 2017, 48, 121. (in Chinese)
[12]
(杨支帅, 田玉奎, 李子健, 敖雷, 高宗春, 汪峰, 高分子学报, 2017, 48, 121.)
[13]
(a) Yam, V. W.-W.; Wong, K. M.-C.; Zhu, N. J. Am. Chem. Soc. 2002, 124, 6506.
[13]
(b) Yam, V. W.-W.; Chan, K. H.-Y.; Wong, K. M.-C.; Zhu, N. Chem.-Eur. J. 2005, 11, 4535.
[14]
Williams, J. A. G. Chem. Soc. Rev. 2009, 38, 1783.
[15]
(a) Hu, S.-J.; Guo, X.-Q.; Zhou, L.-P.; Yan, D.-N.; Cheng, P.-M.; Cai, L.-X.; Li, X.-Z.; Sun, Q.-F. J. Am. Chem. Soc. 2022, 144, 4244.
[15]
(b) Gemen, J.; Ahrens, J.; Shimon, L. J. W.; Klajn, R. J. Am. Chem. Soc. 2020, 142, 17721.
[15]
(c) Benson, C. R.; Kacenauskaite, L.; VanDenburgh, K. L.; Zhao, W.; Qiao, B.; Sadhukhan, T.; Pink, M.; Chen, J.; Borgi, S.; Chen, C.-H.; Davis, B. J.; Simon, Y. C.; Raghavachari, K.; Laursen, B. W.; Flood, A. H. Chem 2020, 6, 1978.
[16]
(a) Liu, S.; Zavalij, P. Y.; Isaacs, L. J. Am. Chem. Soc. 2005, 127, 16798.
[16]
(b) Yang, X.; Liu, F.; Zhao, Z.; Liang, F.; Zhang, H.; Liu, S. Chin. Chem. Lett. 2018, 29, 1560.
[16]
(c) Tian, X.; Zuo, M.; Niu, P.; Wang, K.; Hu, X. Chin. J. Org. Chem. 2020, 40, 1823. (in Chinese)
[16]
(田雪琪, 左旻瓒, 牛蓬勃, 王开亚, 胡晓玉, 有机化学, 2020, 40, 1823.)
[17]
(a) Anis-Ul-Haque, K. M.; Woodward, C. E.; Day, A. I.; Wallace, L. Inorg. Chem. 2020, 59, 3942.
[17]
(b) Luis, E. T.; Day, A. I.; König, B.; Beves, J. E. Inorg. Chem. 2020, 59, 9135.
[17]
(c) Zhang, Y.; Liu, M.; Karatchevtseva, I.; Price, J. R.; Tao, Z.; Wei, G. New J. Chem. 2020, 44, 18208.
[18]
(a) Kuang, S.; Hu, Z.; Zhang, H.; Zhang, X.; Liang, F.; Zhao, Z.; Liu, S. Chem. Commun. 2018, 54, 2169.
[18]
(b) Deng, Y.; Yin, H.; Zhao, Z.; Wang, R.; Liu, S. Supramol. Chem. 2018, 30, 706.
[19]
Hu, Z.; Sun, D.; Han, X.; Liu, S. Chin. J. Org. Chem. 2020, 40, 1361. (in Chinese)
[19]
(胡智雄, 孙冬冬, 韩勰, 刘思敏, 有机化学, 2020, 40, 1361.)
[20]
(a) Chen, Y.; Li, K.; Lu, W.; Chui, S. S.-Y.; Ma, C.-W.; Che, C.-M. Angew. Chem., Int. Ed. 2009, 48, 9909.
[20]
(b) Williams, J. A. G.; Beeby, A.; Davies, E. S.; Weinstein, J. A.; Wilson, C. Inorg. Chem. 2003, 42, 8609.
[20]
(c) Cárdenas, D. J.; Echavarren, A. M.; Ramírez de Arellano, M. C. Organometallics 1999, 18, 3337.
[20]
(d) Wang, Z.; Turner, E.; Mahoney, V.; Madakuni, S.; Groy, T.; Li, J. Inorg. Chem. 2010, 49, 11276.
[21]
Wan, Q.; Xiao, X.-S.; To, W.-P.; Lu, W.; Chen, Y.; Low, K.-H.; Che, C.-M. Angew. Chem., nt. Ed. 2018, 57, 17189.
[22]
(a) Chen, Y.; Lu, W.; Che, C.-M. Organometallics 2013, 32, 350.
[22]
(b) Ai, Y.; Chan, M. H.-Y.; Chan, A. K.-W.; Ng, M.; Li, Y.; Yam, V. W.-W. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 13856.
[23]
Li, B.; Li, Y.; Chan, M. H.-Y.; Yam, V. W.-W. J. Am. Chem. Soc. 2021, 143, 21676.
[24]
Xie, M.; Lu, W. Dalton Trans. 2019, 48, 1275.
[25]
Zhu, S.; Hu, J.; Zhai, S.; Wang, Y.; Xu, Z.; Liu, R.; Zhu, H. Inorg. Chem. Front. 2020, 7, 4677.
[26]
Han, X.; Sun, D.; Tang, S.; Wu, Y.; Wang, L.; Zhang, X.; Liu, S. J. Mater. Chem. C 2021, 9, 17307.
[27]
(a) Kozhevnikov, V. N.; Donnio, B.; Bruce, D. W. Angew. Chem., nt. Ed. 2008, 47, 6286.
[27]
(b) Choi, S. J.; Kuwabara, J.; Nishimura, Y.; Arai, T.; Kanbara, T. Chem. Lett. 2011, 41, 65.
[27]
(c) Abe, T.; Itakura, T.; Ikeda, N.; Shinozaki, K. Dalton Trans. 2009, 711.
[27]
(d) Zhang, X.-P.; Mei, J.-F.; Lai, J.-C.; Li, C.-H.; You, X.-Z. J. Mater. Chem. C 2015, 3, 2350.
Outlines

/