Chemical Looping Ammonia Synthesis with High Performance Supported Molybdenum-based Nitrogen Carrier
Received date: 2022-01-30
Online published: 2022-05-06
Supported by
National Natural Science Foundation of China(22169017); National Natural Science Foundation of China(51976226); Science and Technology Project of Jiangxi Education Department(GJJ201709)
Ammonia is not only a vital source of fertilizers production, but also a hydrogen carrier with high energy density, which has the potential to replace the traditional fossil fuels. However, the industrial route for ammonia production (Haber-Bosch process) is a highly energy-intensive process owing to the harsh operating conditions requirement. It is important to develop a novel ammonia synthesis process with mild operating conditions. Chemical looping ammonia synthesis (CLAS) is known to be an innovative and environmentally-friendly low-pressure ammonia synthesis technology, which separates the overall ammonia synthesis reaction into nitrogen release and replenish reactions facilitated with a nitrogen carrier (NC). NC with high efficiencies is the key to the the practical feasibility of CLAS technology. In this work, the supported molybdenum-based NCs were prepared with ammonium molybdate, hexamethylenetramine, and ZSM-5 zeolites through a facile pyrolysis method at different temperatures, and the performance of N-release, N-fixation, and the cyclic CLAS of NCs were studied in detail. The results indicate that the supported molybdenum-based NC pyrolyzed at 450 ℃ outperformed other NCs with an average NH3 production rate of ca. 20000 μmol•g-1•h-1, which is two or three orders of magnitude higher than that of the known metal nitrides under similar conditions. Bulk and surface analyses of NCs indicated the migration of lattice nitrogen of NC during the direct hydrogenation step for NH3 formation. At N-fixation stage, the nitrogen vacancy of molybdenum-based NC is expected to be recharged from N2. However, the low kinetics is an important problem of NC nitridation. With the introduction of H2, the nitridation kinetics of NC was significantly enhanced, improving the NC regeneration. During a 12-cycle test at 600 ℃ and atmospheric pressure, and the ammonia production rate was stabilized at ca. 1500 μmol•g-1•h-1 for each cycle. This article investigated the preliminary feasibility of the supported molybdenum-based nitride as NC during the process of CLAS and could provide a theoretical basis for the design and development of new types of NCs.
Tan Zhang , Zhongliang Yu , Jiaqi Yu , Huining Wan , Chengyu Bao , Wenqiang Tu , Song Yang . Chemical Looping Ammonia Synthesis with High Performance Supported Molybdenum-based Nitrogen Carrier[J]. Acta Chimica Sinica, 2022 , 80(6) : 788 -796 . DOI: 10.6023/A22010057
| [1] | Klerke, A.; Christensen, C. H.; Norskov, J. K.; Vegge, T. J. Mater. Chem. 2008, 18, 2304. |
| [2] | Guo, J. P.; Chen, P. Chem 2017, 3, 709. |
| [3] | Giddey, S.; Badwal, S. P. S.; Munnings, C.; Dolan, M. ACS Sustainable Chem. Eng. 2017, 5, 10231. |
| [4] | Liu, H. Chin. J. Catal. 2014, 35, 1619. |
| [5] | Xu, T.; Ma, B.; Liang, J.; Yue, L.; Liu, Q.; Li, Y.; Zhao, H.; Luo, Y.; Lu, S.; Sun, X. Acta Phys.-Chim. Sin. 2021, 37, 109. |
| [6] | Wang, Q.; Guo, J.; Chen, P. J. Energy Chem. 2019, 36, 25. |
| [7] | Duan, Y.; Chen, C.; Zhang, J.; Wang, X.; Wei, J. Sci. Sin. Chim. 2020, 50, 337. (in Chinese) |
| [7] | (段一菲, 陈存壮, 张军社, 王新赫, 魏进家, 中国科学: 化学, 2020, 50, 337.) |
| [8] | Guo, J.; Chen, P. Chin. Sci. Bull. 2019, 64, 1114 (in Chinses). |
| [8] | (郭建平, 陈萍, 科学通报, 2019, 64, 1114.) |
| [9] | Feng, S.; Gao, W.; Cao, H.; Guo, J.; Chen, P. Acta Chim. Sinica 2020, 78, 916. (in Chinese) |
| [9] | (冯圣, 高文波, 曹湖军, 陈建平, 陈萍, 化学学报, 2020, 78, 916.) |
| [10] | Feng, S.; Gao, W.; Wang, Q.; Guan, Y.; Yan, H.; Wu, H.; Cao, H.; Guo, J.; Chen, P. J. Mater. Chem. A 2021, 9, 1039. |
| [11] | Gao, W.; Guo, J.; Wang, P.; Wang, Q.; Chang, F.; Pei, Q.; Zhang, W.; Liu, L.; Chen, P. Nat. Energy. 2018, 3, 1067. |
| [12] | Swearer, D. F.; Knowles, N. R.; Everitt, H. O.; Halas, N. J. ACS Energy Lett. 2019, 4, 1505. |
| [13] | McEnaney, J. M.; Singh, A. R.; Schwalbe, J. A.; Kibsgaard, J.; Lin, J. C.; Cargnello, M.; Jaramillo, T. F.; Nørskov, J. K. Energy Environ. Sci. 2017, 10, 1621. |
| [14] | Kim, K.; Lee, S. J.; Kim, D. Y.; Yoo, C. Y.; Choi, J. W.; Kim, J. N.; Woo, Y.; Yoon, H. C.; Han, J. I. ChemSusChem 2018, 11, 120. |
| [15] | Galvez, M. E.; Frei, A.; Halmann, M.; Steinfeld, A. Ind. Eng. Chem. Res. 2007, 46, 2047. |
| [16] | Feng, M.; Zhang, Q.; Wu, Y.; Liu, D. Energy Fuels 2020, 34, 12527. |
| [17] | Gao, Y.; Wu, Y.; Zhang, Q.; Chen, X.; Jiang, G.; Liu, D. Int. J. Hydrog. Energy 2018, 43, 16589. |
| [18] | Wu, Y.; Gao, Y.; Zhang, Q.; Cai, T.; Chen, X.; Liu, D.; Fan, M. Fuel 2020, 264, 116821. |
| [19] | Laassiri, S.; Zeinalipour-Yazdi, C. D.; Catlow, C. R. A.; Hargreaves, J. S. J. Appl. Catal., B 2018, 223, 60. |
| [20] | Michalsky, R.; Parman, B. J.; Amanor-Boadu, V.; Pfromm, P. H. Energy 2012, 42, 251. |
| [21] | Aframehr, W. M.; Huang, C.; Pfromm, P. H. Chem. Eng. Technol. 2020, 43, 2126. |
| [22] | Hua, J. L.; Wang, K.; Wang, Q.; Peng, R. J. J. Therm. Anal. Calorim. 2021, 146, 673. |
| [23] | He, Z.; Jiang, Y.; Cui, X.; Liu, Z.; Meng, X.; Wan, J.; Ma, F. ACS Appl. Nano Mater. 2022, 5, 5470. |
| [24] | Thangudu, S.; Wu, C.-H.; Lee, C.-H.; Hwang, K. C. ACS Sustain. Chem. Eng. 2021, 9, 8748. |
| [25] | Wang, J.; Jiang, Z.; Peng, G.; Hoenig, E.; Yan, G.; Wang, M.; Liu, Y.; Du, X.; Liu, C. Adv. Sci. (Weinh). 2022, 9, e2104857. |
| [26] | Song, Y.; Wang, H.; Song, Z.; Zheng, X.; Fan, B.; Han, X.; Deng, Y.; Hu, W. ACS Appl. Mater. Interfaces 2022, 14, 17273. |
| [27] | Huang, X.; Ding, X.; Wang, J.; Wang, Y.; Gurti, J. I.; Chen, Y.; Wang, M.; Li, W.; Wang, X. Struct. Chem. 2022, doi: 10.1007/s11224-022-01919-x |
| [28] | Xu, K.; Feng, J.; Chu, Q.; Zhang, L.; Li, W. Acta Phys.-Chim. Sin. 2014, 30, 2063. (in Chinese) |
| [28] | (徐坤, 冯杰, 褚绮, 张丽丽, 李文英, 物理化学学报, 2014, 30, 2063.) |
| [29] | Ren, X.; Cui, G.; Chen, L.; Xie, F.; Wei, Q.; Tian, Z.; Sun, X. Chem. Commun. 2018, 54, 8474. |
| [30] | Liu, N.; Nie, L.; Xue, N.; Dong, H.; Peng, L.; Guo, X.; Ding, W. ChemCatChem 2010, 2, 167. |
| [31] | Ding, W.; Li, S.; Meitzner, G.; Iglesia, E. J. Phys. Chem. B 2001, 105, 506. |
| [32] | Afanasiev, P. Inorg. Chem. 2002, 41, 5317. |
| [33] | Yu, Z.; Yoshida, A.; Shi, J.; Wang, T.; Yang, S.; Ye, Q.; Hao, X.; Abudula, A.; Fang, Y.; Guan, G. ACS Sustain. Chem. Eng. 2020, 8, 13956. |
| [34] | Yu, Z.; An, X.; Kurnia, I.; Yoshida, A.; Yang, Y.; Hao, X.; Abudula, A.; Fang, Y.; Guan, G. ACS Catal. 2020, 10, 5353. |
| [35] | Wang, B.; Guo, H.; Yin, X.; Shen, L. Energy Fuels 2020, 34, 10247. |
| [36] | Wei, Z. B. Z.; Grange, P.; Delmon, B. Appl. Surf. Sci. 1998, 135, 107. |
| [37] | Song, Y.; Yuan, Z. Electrochim. Acta 2017, 246, 536. |
| [38] | Roy, P. K.; Kumar, S. ACS Appl. Energy Mater. 2020, 3, 7167. |
| [39] | Hargreaves, J. S. J.; McKay, D. J. Mol. Catal. A: Chem. 2009, 305, 125. |
| [40] | McKay, D.; Hargreaves, J. S. J.; Rico, J. L.; Rivera, J. L.; Sun, X. L. J. Solid State Chem. 2008, 181, 325. |
| [41] | Al Sobhi, S.; Bion, N.; Hargreaves, J. S. J.; Hector, A. L.; Laassiri, S.; Levason, W.; Lodge, A. W.; McFarlane, A. R.; Ritter, C. Mater. Res. Bull. 2019, 118, 110519. |
| [42] | Yang, S.; Zhang, T.; Yang, Y.; Wang, B.; Li, J.; Gong, Z.; Yao, Z.; Du, W.; Liu, S.; Yu, Z. Appl. Catal. B 2022, 312, 121404. |
| [43] | Alexander, A. M.; Hargreaves, J. S. J.; Mitchell, C. Top. Catal. 2013, 56, 1963. |
| [44] | Michalsky, R.; Avram, A. M.; Peterson, B. A.; Pfromm, P. H.; Peterson, A. A. Chem. Sci. 2015, 6, 3965. |
| [45] | Alexander, A. M.; Hargreaves, J. S. J.; Mitchell, C. Top. Catal. 2012, 55, 1046. |
| [46] | Gong, S.; Chen, H.; Li, W.; Li, B. Appl. Catal. A: Gen. 2005, 279, 257. |
| [47] | Michalsky, R.; Pfromm, P. H.; Steinfeld, A. Interface Focus. 2015, 5, 20140084. |
| [48] | Michalsky, R.; Pfromm, P. H. J. Phys. Chem. C 2012, 116, 23243. |
| [49] | Gregory, D. H.; Hargreaves, J. S. J.; Hunter, S. M. Catal. Lett. 2010, 141, 22. |
| [50] | McKay, D.; Gregory, D. H.; Hargreaves, J. S.; Hunter, S. M.; Sun, X. Chem. Commun. 2007, 3051. |
| [51] | Sato, K.; Imamura, K.; Kawano, Y.; Miyahara, S.; Yamamoto, T.; Matsumura, S.; Nagaoka, K. Chem. Sci. 2017, 8, 674. |
| [52] | Kojima, R.; Aika, K. Appl. Catal. A-Gen. 2001, 219, 141. |
/
| 〈 |
|
〉 |