Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (6): 788-796.DOI: 10.6023/A22010057 Previous Articles Next Articles
Article
张谭a,c, 余钟亮b,*(
), 余嘉祺b, 万慧凝b, 包成宇b, 涂文强b, 杨颂c,d
投稿日期:2022-01-30
发布日期:2022-07-07
通讯作者:
余钟亮
基金资助:
Tan Zhanga,c, Zhongliang Yub(
), Jiaqi Yub, Huining Wanb, Chengyu Baob, Wenqiang Tub, Song Yangc,d
Received:2022-01-30
Published:2022-07-07
Contact:
Zhongliang Yu
Supported by:Share
Tan Zhang, Zhongliang Yu, Jiaqi Yu, Huining Wan, Chengyu Bao, Wenqiang Tu, Song Yang. Chemical Looping Ammonia Synthesis with High Performance Supported Molybdenum-based Nitrogen Carrier[J]. Acta Chimica Sinica, 2022, 80(6): 788-796.
| 样品名称a | 比表面积/(m2•g-1) | 平均孔径/nm | 孔体积/(cm3•g-1) |
|---|---|---|---|
| 载体材料ZSM-5 | 338.7 | 2.5 | 0.09 |
| 热解后样品 | 134.2 | 3.7 | 0.03 |
| 12次循环后样品 | 159.8 | 2.9 | 0.02 |
| 样品名称a | 比表面积/(m2•g-1) | 平均孔径/nm | 孔体积/(cm3•g-1) |
|---|---|---|---|
| 载体材料ZSM-5 | 338.7 | 2.5 | 0.09 |
| 热解后样品 | 134.2 | 3.7 | 0.03 |
| 12次循环后样品 | 159.8 | 2.9 | 0.02 |
| 热解温度/℃ | wN/% | wC/% | wH/% | wS/% | wMo/% | 化学式 |
|---|---|---|---|---|---|---|
| 400 | 1.68 | 1.97 | 0.24 | 0 | 30.34 | Mo2N0.76H0.74C |
| 450 | 1.60 | 1.58 | 0.21 | 0 | 33.84 | Mo2N0.65H0.58C0.74 |
| 500 | 1.44 | 1.16 | 0.19 | 0 | 35.38 | Mo2N0.55H0.51C0.52 |
| 550 | 1.39 | 0.82 | 0.20 | 0 | 33.47 | Mo2N0.57H0.58C0.39 |
| 600 | 2.68 | 1.29 | 0.74 | 0 | 41.57 | Mo2N0.88H1.7C0.5 |
| 热解温度/℃ | wN/% | wC/% | wH/% | wS/% | wMo/% | 化学式 |
|---|---|---|---|---|---|---|
| 400 | 1.68 | 1.97 | 0.24 | 0 | 30.34 | Mo2N0.76H0.74C |
| 450 | 1.60 | 1.58 | 0.21 | 0 | 33.84 | Mo2N0.65H0.58C0.74 |
| 500 | 1.44 | 1.16 | 0.19 | 0 | 35.38 | Mo2N0.55H0.51C0.52 |
| 550 | 1.39 | 0.82 | 0.20 | 0 | 33.47 | Mo2N0.57H0.58C0.39 |
| 600 | 2.68 | 1.29 | 0.74 | 0 | 41.57 | Mo2N0.88H1.7C0.5 |
| No. | Metal nitrides | Condition | Ammonia production rate/ (μmol•g-1•h-1) | Ref. |
|---|---|---|---|---|
| 1 | Fe-Mn-N | 400 ℃ | 23 | [ |
| 2 | Co-Mn-N | 400 ℃ | 46 | [ |
| 3 | Fe3N | 400 ℃ | 50 | [ |
| 4 | Mn6N2.58 | 550 ℃ | 62 | [ |
| 5 | Ta3N5 | 400 ℃ | 80 | [ |
| 6 | Sr2N | 550 ℃ | 88 | [ |
| 7 | Ca3N2 | 550 ℃ | 121 | [ |
| 8 | Re3N | 350 ℃ | 130 | [ |
| 9 | Li-Mn-N | 400 ℃ | 261 | [ |
| 10 | Cu3N | 250 ℃ | 665 | [ |
| 11 | Zn3N2 | 400 ℃ | 852 | [ |
| 12 | Mo-N | 450 ℃ | 20000 | This work |
| No. | Metal nitrides | Condition | Ammonia production rate/ (μmol•g-1•h-1) | Ref. |
|---|---|---|---|---|
| 1 | Fe-Mn-N | 400 ℃ | 23 | [ |
| 2 | Co-Mn-N | 400 ℃ | 46 | [ |
| 3 | Fe3N | 400 ℃ | 50 | [ |
| 4 | Mn6N2.58 | 550 ℃ | 62 | [ |
| 5 | Ta3N5 | 400 ℃ | 80 | [ |
| 6 | Sr2N | 550 ℃ | 88 | [ |
| 7 | Ca3N2 | 550 ℃ | 121 | [ |
| 8 | Re3N | 350 ℃ | 130 | [ |
| 9 | Li-Mn-N | 400 ℃ | 261 | [ |
| 10 | Cu3N | 250 ℃ | 665 | [ |
| 11 | Zn3N2 | 400 ℃ | 852 | [ |
| 12 | Mo-N | 450 ℃ | 20000 | This work |
| 样品名称a | wN/% | wC/% | wH/% | wS/% |
|---|---|---|---|---|
| 热解后 | 2.67 | 1.29 | 0.74 | 0.00 |
| 氢化后 | 1.39 | 1.11 | 0.71 | 0.00 |
| 再生后 | 1.91 | 1.09 | 0.60 | 0.00 |
| 样品名称a | wN/% | wC/% | wH/% | wS/% |
|---|---|---|---|---|
| 热解后 | 2.67 | 1.29 | 0.74 | 0.00 |
| 氢化后 | 1.39 | 1.11 | 0.71 | 0.00 |
| 再生后 | 1.91 | 1.09 | 0.60 | 0.00 |
| [1] |
Klerke, A.; Christensen, C. H.; Norskov, J. K.; Vegge, T. J. Mater. Chem. 2008, 18, 2304.
doi: 10.1039/b720020j |
| [2] |
Guo, J. P.; Chen, P. Chem 2017, 3, 709.
doi: 10.1016/j.chempr.2017.10.004 |
| [3] |
Giddey, S.; Badwal, S. P. S.; Munnings, C.; Dolan, M. ACS Sustainable Chem. Eng. 2017, 5, 10231.
doi: 10.1021/acssuschemeng.7b02219 |
| [4] |
Liu, H. Chin. J. Catal. 2014, 35, 1619.
doi: 10.1016/S1872-2067(14)60118-2 |
| [5] |
Xu, T.; Ma, B.; Liang, J.; Yue, L.; Liu, Q.; Li, Y.; Zhao, H.; Luo, Y.; Lu, S.; Sun, X. Acta Phys.-Chim. Sin. 2021, 37, 109.
|
| [6] |
Wang, Q.; Guo, J.; Chen, P. J. Energy Chem. 2019, 36, 25.
doi: 10.1016/j.jechem.2019.01.027 |
| [7] |
Duan, Y.; Chen, C.; Zhang, J.; Wang, X.; Wei, J. Sci. Sin. Chim. 2020, 50, 337. (in Chinese)
doi: 10.1360/SSC-2019-0156 |
|
(段一菲, 陈存壮, 张军社, 王新赫, 魏进家, 中国科学: 化学, 2020, 50, 337.)
|
|
| [8] |
Guo, J.; Chen, P. Chin. Sci. Bull. 2019, 64, 1114 (in Chinses).
doi: 10.1360/N972019-00079 |
|
(郭建平, 陈萍, 科学通报, 2019, 64, 1114.)
|
|
| [9] |
Feng, S.; Gao, W.; Cao, H.; Guo, J.; Chen, P. Acta Chim. Sinica 2020, 78, 916. (in Chinese)
doi: 10.6023/A20060207 |
|
(冯圣, 高文波, 曹湖军, 陈建平, 陈萍, 化学学报, 2020, 78, 916.)
|
|
| [10] |
Feng, S.; Gao, W.; Wang, Q.; Guan, Y.; Yan, H.; Wu, H.; Cao, H.; Guo, J.; Chen, P. J. Mater. Chem. A 2021, 9, 1039.
doi: 10.1039/D0TA10519H |
| [11] |
Gao, W.; Guo, J.; Wang, P.; Wang, Q.; Chang, F.; Pei, Q.; Zhang, W.; Liu, L.; Chen, P. Nat. Energy. 2018, 3, 1067.
doi: 10.1038/s41560-018-0268-z |
| [12] |
Swearer, D. F.; Knowles, N. R.; Everitt, H. O.; Halas, N. J. ACS Energy Lett. 2019, 4, 1505.
doi: 10.1021/acsenergylett.9b00860 |
| [13] |
McEnaney, J. M.; Singh, A. R.; Schwalbe, J. A.; Kibsgaard, J.; Lin, J. C.; Cargnello, M.; Jaramillo, T. F.; Nørskov, J. K. Energy Environ. Sci. 2017, 10, 1621.
doi: 10.1039/C7EE01126A |
| [14] |
Kim, K.; Lee, S. J.; Kim, D. Y.; Yoo, C. Y.; Choi, J. W.; Kim, J. N.; Woo, Y.; Yoon, H. C.; Han, J. I. ChemSusChem 2018, 11, 120.
doi: 10.1002/cssc.201701975 |
| [15] |
Galvez, M. E.; Frei, A.; Halmann, M.; Steinfeld, A. Ind. Eng. Chem. Res. 2007, 46, 2047.
doi: 10.1021/ie061551m |
| [16] |
Feng, M.; Zhang, Q.; Wu, Y.; Liu, D. Energy Fuels 2020, 34, 12527.
doi: 10.1021/acs.energyfuels.0c02733 |
| [17] |
Gao, Y.; Wu, Y.; Zhang, Q.; Chen, X.; Jiang, G.; Liu, D. Int. J. Hydrog. Energy 2018, 43, 16589.
doi: 10.1016/j.ijhydene.2018.07.042 |
| [18] |
Wu, Y.; Gao, Y.; Zhang, Q.; Cai, T.; Chen, X.; Liu, D.; Fan, M. Fuel 2020, 264, 116821.
doi: 10.1016/j.fuel.2019.116821 |
| [19] |
Laassiri, S.; Zeinalipour-Yazdi, C. D.; Catlow, C. R. A.; Hargreaves, J. S. J. Appl. Catal., B 2018, 223, 60.
doi: 10.1016/j.apcatb.2017.04.073 |
| [20] |
Michalsky, R.; Parman, B. J.; Amanor-Boadu, V.; Pfromm, P. H. Energy 2012, 42, 251.
doi: 10.1016/j.energy.2012.03.062 |
| [21] |
Aframehr, W. M.; Huang, C.; Pfromm, P. H. Chem. Eng. Technol. 2020, 43, 2126.
doi: 10.1002/ceat.202000154 |
| [22] |
Hua, J. L.; Wang, K.; Wang, Q.; Peng, R. J. J. Therm. Anal. Calorim. 2021, 146, 673.
doi: 10.1007/s10973-020-10029-x |
| [23] |
He, Z.; Jiang, Y.; Cui, X.; Liu, Z.; Meng, X.; Wan, J.; Ma, F. ACS Appl. Nano Mater. 2022, 5, 5470.
doi: 10.1021/acsanm.2c00467 |
| [24] |
Thangudu, S.; Wu, C.-H.; Lee, C.-H.; Hwang, K. C. ACS Sustain. Chem. Eng. 2021, 9, 8748.
doi: 10.1021/acssuschemeng.1c01208 |
| [25] |
Wang, J.; Jiang, Z.; Peng, G.; Hoenig, E.; Yan, G.; Wang, M.; Liu, Y.; Du, X.; Liu, C. Adv. Sci. (Weinh). 2022, 9, e2104857.
|
| [26] |
Song, Y.; Wang, H.; Song, Z.; Zheng, X.; Fan, B.; Han, X.; Deng, Y.; Hu, W. ACS Appl. Mater. Interfaces 2022, 14, 17273.
doi: 10.1021/acsami.2c00280 |
| [27] |
Huang, X.; Ding, X.; Wang, J.; Wang, Y.; Gurti, J. I.; Chen, Y.; Wang, M.; Li, W.; Wang, X. Struct. Chem. 2022, doi: 10.1007/s11224-022-01919-x
doi: 10.1007/s11224-022-01919-x |
| [28] |
Xu, K.; Feng, J.; Chu, Q.; Zhang, L.; Li, W. Acta Phys.-Chim. Sin. 2014, 30, 2063. (in Chinese)
doi: 10.3866/PKU.WHXB201409221 |
|
(徐坤, 冯杰, 褚绮, 张丽丽, 李文英, 物理化学学报, 2014, 30, 2063.)
|
|
| [29] |
Ren, X.; Cui, G.; Chen, L.; Xie, F.; Wei, Q.; Tian, Z.; Sun, X. Chem. Commun. 2018, 54, 8474.
doi: 10.1039/C8CC03627F |
| [30] |
Liu, N.; Nie, L.; Xue, N.; Dong, H.; Peng, L.; Guo, X.; Ding, W. ChemCatChem 2010, 2, 167.
doi: 10.1002/cctc.200900155 |
| [31] |
Ding, W.; Li, S.; Meitzner, G.; Iglesia, E. J. Phys. Chem. B 2001, 105, 506.
doi: 10.1021/jp0030692 |
| [32] |
Afanasiev, P. Inorg. Chem. 2002, 41, 5317.
pmid: 12377022 |
| [33] |
Yu, Z.; Yoshida, A.; Shi, J.; Wang, T.; Yang, S.; Ye, Q.; Hao, X.; Abudula, A.; Fang, Y.; Guan, G. ACS Sustain. Chem. Eng. 2020, 8, 13956.
doi: 10.1021/acssuschemeng.0c03269 |
| [34] |
Yu, Z.; An, X.; Kurnia, I.; Yoshida, A.; Yang, Y.; Hao, X.; Abudula, A.; Fang, Y.; Guan, G. ACS Catal. 2020, 10, 5353.
doi: 10.1021/acscatal.0c00752 |
| [35] |
Wang, B.; Guo, H.; Yin, X.; Shen, L. Energy Fuels 2020, 34, 10247.
doi: 10.1021/acs.energyfuels.0c01000 |
| [36] |
Wei, Z. B. Z.; Grange, P.; Delmon, B. Appl. Surf. Sci. 1998, 135, 107.
doi: 10.1016/S0169-4332(98)00267-0 |
| [37] |
Song, Y.; Yuan, Z. Electrochim. Acta 2017, 246, 536.
doi: 10.1016/j.electacta.2017.06.086 |
| [38] |
Roy, P. K.; Kumar, S. ACS Appl. Energy Mater. 2020, 3, 7167.
doi: 10.1021/acsaem.0c01209 |
| [39] |
Hargreaves, J. S. J.; McKay, D. J. Mol. Catal. A: Chem. 2009, 305, 125.
doi: 10.1016/j.molcata.2008.08.006 |
| [40] |
McKay, D.; Hargreaves, J. S. J.; Rico, J. L.; Rivera, J. L.; Sun, X. L. J. Solid State Chem. 2008, 181, 325.
doi: 10.1016/j.jssc.2007.12.001 |
| [41] |
Al Sobhi, S.; Bion, N.; Hargreaves, J. S. J.; Hector, A. L.; Laassiri, S.; Levason, W.; Lodge, A. W.; McFarlane, A. R.; Ritter, C. Mater. Res. Bull. 2019, 118, 110519.
doi: 10.1016/j.materresbull.2019.110519 |
| [42] |
Yang, S.; Zhang, T.; Yang, Y.; Wang, B.; Li, J.; Gong, Z.; Yao, Z.; Du, W.; Liu, S.; Yu, Z. Appl. Catal. B 2022, 312, 121404.
doi: 10.1016/j.apcatb.2022.121404 |
| [43] |
Alexander, A. M.; Hargreaves, J. S. J.; Mitchell, C. Top. Catal. 2013, 56, 1963.
doi: 10.1007/s11244-013-0133-z |
| [44] |
Michalsky, R.; Avram, A. M.; Peterson, B. A.; Pfromm, P. H.; Peterson, A. A. Chem. Sci. 2015, 6, 3965.
doi: 10.1039/c5sc00789e pmid: 29218166 |
| [45] |
Alexander, A. M.; Hargreaves, J. S. J.; Mitchell, C. Top. Catal. 2012, 55, 1046.
doi: 10.1007/s11244-012-9890-3 |
| [46] |
Gong, S.; Chen, H.; Li, W.; Li, B. Appl. Catal. A: Gen. 2005, 279, 257.
doi: 10.1016/j.apcata.2004.10.038 |
| [47] |
Michalsky, R.; Pfromm, P. H.; Steinfeld, A. Interface Focus. 2015, 5, 20140084.
doi: 10.1098/rsfs.2014.0084 |
| [48] |
Michalsky, R.; Pfromm, P. H. J. Phys. Chem. C 2012, 116, 23243.
doi: 10.1021/jp307382r |
| [49] |
Gregory, D. H.; Hargreaves, J. S. J.; Hunter, S. M. Catal. Lett. 2010, 141, 22.
doi: 10.1007/s10562-010-0464-3 |
| [50] |
McKay, D.; Gregory, D. H.; Hargreaves, J. S.; Hunter, S. M.; Sun, X. Chem. Commun. 2007, 3051.
|
| [51] |
Sato, K.; Imamura, K.; Kawano, Y.; Miyahara, S.; Yamamoto, T.; Matsumura, S.; Nagaoka, K. Chem. Sci. 2017, 8, 674.
doi: 10.1039/C6SC02382G |
| [52] |
Kojima, R.; Aika, K. Appl. Catal. A-Gen. 2001, 219, 141.
doi: 10.1016/S0926-860X(01)00676-7 |
| [1] | Xiao Chen, Hanhua Xu, Xianghui Shi, Junnian Wei, Zhenfeng Xi. Dinitrogen Activation and Transformation Promoted by Rare Earth and Actinide Complexes [J]. Acta Chimica Sinica, 2022, 80(9): 1299-1308. |
| [2] | Xingyu Ma, Hui Sun, Jiang Li, Zhiyang Liu, Hongjun Zhou. “Continuous” Nitrogen Reduction Synthesis of Ammonia Based on Li-N2 Battery System [J]. Acta Chimica Sinica, 2022, 80(7): 861-866. |
| [3] | Xiawei Ying, Jianjun Fu, Min Zeng, Wen Liu, Tianyu Zhang, Peikang Shen, Xinyi Zhang. BiOCl-Fe2O3@TiO2 Mesoporous Composite for Photoelectrochemical Synthesis of Ammonia [J]. Acta Chimica Sinica, 2022, 80(4): 503-509. |
| [4] | Su Zhan, Fuxiang Zhang. Recent Progress on Electrocatalytic Synthesis of Ammonia Under Amibent Conditions [J]. Acta Chimica Sinica, 2021, 79(2): 146-157. |
| [5] | Riyi Chen, Songsheng Zheng, Zhibin Lin, Yunquan Liu, Zhaolin Wang. Performance Study of Direct Ammonia Fuel Cell Based on PtIr/C Anode Electrocatalyst [J]. Acta Chimica Sinica, 2021, 79(10): 1286-1292. |
| [6] | Feng Sheng, Gao Wenbo, Cao Hujun, Guo Jianping, Chen Ping. Advances in the Chemical Looping Ammonia Synthesis [J]. Acta Chimica Sinica, 2020, 78(9): 916-927. |
| [7] | Li Jiapeng, Yin Jianhao, Yu Chao, Zhang Wenxiong, Xi Zhenfeng. Direct Transformation of N2 to N-Containing Organic Compounds [J]. Acta Chim. Sinica, 2017, 75(8): 733-743. |
| [8] | Wang Ziqing, Chen Geng, Lin Jianxin, Wang Rong, Wei Kemei. Preparation of Ru/Ba-ZrO2 Catalyst and Its Performance for Ammonia Synthesis [J]. Acta Chimica Sinica, 2013, 71(02): 205-212. |
| [9] | Lin Jianxin, Zhang Liuming, Ni Jun, Wang Rong, Wei Kemei. Effect of Redox Co-precipitation Methods on Structure and Catalytic Activity of Ru/CeO2 Catalysts for Ammonia Synthesis [J]. Acta Chimica Sinica, 2012, 70(02): 137-142. |
| [10] | DENG Xiao-Hui, WU Ya-Ting, HE Mei-Feng, DAN Cheng-Yi, CHEN Yu-Juan, DENG Yi-Da, JIANG Deng-Hui, ZHONG Cheng. Electrochemical Deposition of Pt Particles on Indium Tin Oxide Electrode and Their Electrocatalytic Applications in Ammonia Oxidation [J]. Acta Chimica Sinica, 2011, 69(9): 1041-1046. |
| [11] | WANG Bin, YANG Ren-Dang, SHI Wei-Jian, LIU De-Tao, ZHU Lei. Preparation of Doping Ammonia-Ionic Liquid Microemulsion (DAIME) and Its Physical-Chemistry Effect for lignocellulose [J]. Acta Chimica Sinica, 2011, 69(24): 3013-3018. |
| [12] | ZOU Shao-Shuang, TAO Zhan-Liang, CHEN Jun. Preparation of Ammonia Borane with Ammonia Complex and the Study of Hydrogen Desorption Performance [J]. Acta Chimica Sinica, 2011, 69(18): 2117-2122. |
| [13] | MA Shuang-Chen, SUN Yun-Xue, ZHAO Yi, FANG Wen-Wu, HAN Jian, LIANG Pi-Zhao. Experimental and Mechanism Research on CO2 Capture from Simulating Flue Gas Using Ammonia Solution [J]. Acta Chimica Sinica, 2011, 69(12): 1469-1474. |
| [14] | . Proton Conduction in La0.9M0.1Ga0.8Mg0.2O3-α at Intermediate Temperature and Its Application to Synthesis of Ammonia at Atmospheric Pressure [J]. Acta Chimica Sinica, 2009, 67(7): 623-628. |
| [15] | LUO Xiao-Jun, WANG Rong, NI Jun, LIN Jian-Xin, WEI Ge-Mei. Effect of Precipitants on Structure and Catalytic Activity of Ru/CeO2 Catalysts for Ammonia Synthesis [J]. Acta Chimica Sinica, 2009, 67(22): 2573-2578. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||