Review

Recent Advances in the Synthesis of Arylstannanes

  • Guanglu Yue ,
  • Jingyao Wei ,
  • Di Qiu ,
  • Fanyang Mo
Expand
  • a Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
    b School of Materials Science and Engineering, Peking University, Beijing 100871, China
* E-mail: ; Tel.: 13811114725;

Received date: 2022-03-17

  Online published: 2022-05-06

Supported by

Science & Technology Development Fund of Tianjin Education Commission for Higher Education(2020KJ007)

Abstract

Arylstannanes are highly valuable synthetic intermediates in constructing aryl carbon-carbon bonds and carbon-heteroatom bonds in functional molecules. These compounds have demonstrated great applications in medicinal chemistry, materials science and organic synthesis. Due to the synthetic value, development of efficient and novel methods to synthesize arylstannanes is of significant importance. According to the type of reaction mechanism, this content will illustrate the methods for synthesizing arylstannanes in recent years including (1) stannylation of aromatic nucleophiles; (2) stannylation of aromatic electrophiles; (3) transition-metal-catalyzed stannylation coupling reactions; (4) stannylation reactions mediated by aryl radical intermediates; (5) cyclization of alkynes and tandem stannylation. Finally, we further provide a perspective on the development direction of the synthesis of arylstannanes.

Cite this article

Guanglu Yue , Jingyao Wei , Di Qiu , Fanyang Mo . Recent Advances in the Synthesis of Arylstannanes[J]. Acta Chimica Sinica, 2022 , 80(7) : 956 -969 . DOI: 10.6023/A22030118

References

[1]
(a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.
[1]
(b) Stille, J. K. Angew. Chem. Int. Ed. 1986, 25, 508.
[1]
(c) Farina, V. Pure Appl. Chem. 1996, 68, 73.
[1]
(d) Kosugi, M.; Fugami, K. Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.: Negishi, E., Wiley, New York, 2002, p. 263.
[1]
(e) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
[1]
(f) Espinet, P.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 4704.
[1]
(g) Wang, D.-P.; Zhang, X.-D.; Liang, Y.; Li, J.-H. Chin. J. Org. Chem. 2006, 26, 19. (in Chinese)
[1]
(王德平, 张旭东, 梁云, 李金恒, 有机化学, 2006, 26, 19. )
[1]
(h) Wang, S.-H.; Yan, S.-G.; Hu, X.-Q.; Guo, H.-F. Acta Chim. Sinica 1993, 51, 393. (in Chinese)
[1]
(王世华, 阎圣刚, 胡信全, 郭和夫, 化学学报, 1993, 51, 393.)
[2]
(a) Ragan, J. A.; Raggon, J. W.; Hill, P. D.; Jones, B. P.; McDermott, R. E.; Munchhof, M. J.; Marx, M. A.; Casavant, J. M.; Cooper, B. A.; Doty, J. L.; Lu, Y. Org. Process Res. Dev. 2003, 7, 676.
[2]
(b) Alonso, E.; Fuwa, H.; Vale, C.; Suga, Y.; Goto, T.; Konno, Y.; Sasaki, M.; LaFerla, F. M.; Vieytes, M. R.; Gime?nez-Llort, L.; Botana, L. M. J. Am. Chem. Soc. 2012, 134, 7467.
[2]
(c) Valot, G.; Regens, C. S.; O’Malley, D. P.; Godineau, E.; Takikawa, H.; Fürstner, A. Angew. Chem. Int. Ed. 2013, 52, 9534.
[2]
(d) Li, H.-L.; Chen, Q.-F.; Lu, Z.-H.; Li, A. J. Am. Chem. Soc. 2016, 138, 15555.
[3]
(a) Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L. Chem. Rev. 2011, 111, 1493.
[3]
(b) Murphy, A. R.; Liu, J.; Luscombe, C.; Kavulak, D.; Frechet, J. M. J.; Kline, R. J.; McGehee, M. D. Chem. Mater. 2005, 17, 4892.
[3]
(c) Cao, Y.; Guo, Z.-H.; Chen, Z.-Y.; Yuan, J.-S.; Dou, J.-H.; Zheng, Y.-Q.; Wang, J.-Y.; Pei, J. Polym. Chem. 2014, 5, 5369.
[3]
(d) Yu, Z.-D.; Lu, Y.; Wang, J.-Y.; Pei, J. Chem. Eur. J. 2020, 26, 16194.
[3]
(e) Lu, Y.; Yu, Z.-D.; Un, H.-L.; Yao, Z.-F.; You, H.-Y.; Jin, W.-L.; Li, L.; Wang, Z.-Y.; Dong, B.-W.; Barlow, S.; Longhi, E.; Di, C.-A.; Zhu, D.-B.; Wang, J.-Y.; Silva, C.; Marder, S. R.; Pei, J. Adv. Mater. 2021, 33, 2005946.
[4]
Lam, P. Y. S.; Vincent, G.; Bonne, D.; Clark, C. G. Tetrahedron Lett. 2002, 43, 3091.
[5]
(a) Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662.
[5]
(b) Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150.
[5]
(c) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135, 4648.
[5]
(d) Makaravage, K. J.; Brooks, A. F.; Mossine, A. V.; Sanford, M. S.; Scott, P. J. H. Org. Lett. 2016, 18, 5440.
[5]
(e) Gamache, R. F.; Waldmann, C.; Murphy, J. M. Org. Lett. 2016, 18, 4522.
[6]
Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308.
[7]
(a) Faraoni, M. B.; Koll, L. C.; Mandolesi, S. D.; Zúñiga, A. E.; Podestá, J. C. J. Organomet. Chem. 2000, 613, 236.
[7]
(b) Britovsek, G. J. P.; Ugolotti, J.; White, A. J. P. Organometallics 2005, 24, 1685.
[8]
(a) Soderquist, J. A.; Hassner, A. J. Am. Chem. Soc. 1980, 102, 1577.
[8]
(b) Moerlein, S. M. J. Organomet. Chem. 1989, 319, 29.
[8]
(c) Hayashi, T.; Ishigedani, M. Tetrahedron 2001, 57, 2589.
[8]
(d) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
[9]
Blum, M. S.; Pratt, J. J., Jr. J. Econ. Entomol. 1960, 53, 445.
[10]
(a) Yammal, C. C.; Podestá, J. C.; Rossi, R. A. J. Org. Chem. 1992, 57, 5720.
[10]
(b) Lockhart, M. T.; Chopa, A. B.; Rossi, R. A. J. Organomet. Chem. 1999, 582, 229.
[10]
(c) Chopa, A. B.; Lockhart, M. T.; Silbestri, G. Organometallics 2000, 19, 2249.
[11]
(a) Azarian, D.; Dua, S. S.; Eaborn, C.; Walton, D. R. M. J. Organomet. Chem. 1976, 117, C55.
[11]
(b) Azizian, H.; Eaborn, C. E.; Pidcock, A. J. Organomet. Chem. 1981, 215, 49.
[12]
Zhao, Z.-Q.; Sun, B.; Peng, L.-Z.; Li, Y.; Li, Y.-L. Chin. J. Chem. 2004, 22, 1382.
[13]
Gerbino, D. C.; Fidelibus, P. M.; Mandolesi, S. D.; Ocampo, R. A.; Scoccia, J.; Podestá, J. C. J. Organomet. Chem. 2013, 741, 24.
[14]
Knochel, P.; Dagousset, G.; François, C.; Leόn, T.; Blanc, R.; Sansiaume-Dagousset, E. Synthesis 2014, 46, 3133.
[15]
Gosmini, C.; Perichon, J. Org. Biomol. Chem. 2005, 3, 216.
[16]
Jeganmohan, M.; Knochel, P. Angew. Chem. Int. Ed. 2010, 49, 8520.
[17]
Warner, B.-P.; Buchwald, S.-L. J. Org. Chem. 1994, 59, 5822.
[18]
Tsai, C. H.; Chirdon, D. N.; Maurer, A. B.; Bernhard, S.; Noonan, K. J. Org. Lett. 2013, 15, 5230.
[19]
Mao, S.; Chen, Z.-K.; Wang, L.; Khadka, D. B.; Xin, M.-H.; Li, P.-F.; Zhang, S.-Q. J. Org. Chem. 2019, 84, 463.
[20]
Wang, D.-Y.; Wen, X.; Xiong, C.-D.; Zhao, J.-N.; Ding, C.-Y.; Meng, Q.; Zhou, H.; Wang, C.; Uchiyama, M.; Lu, X.-J.; Zhang, A. iScience 2019, 15, 307.
[21]
Zhao, J.-N.; Kayumov, M.; Wang, D.-Y.; Zhang, A. Org. Lett. 2019, 21, 7303.
[22]
(a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.
[22]
(b) Ishiyama, T.; Ishida, K.; Miyaura, N. Tetrahedron 2001, 57, 9813.
[22]
(c) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Angew. Chem. Int. Ed. 2007, 46, 5359.
[22]
(d) Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62, 6458.
[22]
(e) Zhu, W.; Ma, D. Org. Lett. 2006, 8, 261.
[22]
(f) Kleeberg, C.; Dang, L.; Lin, Z.; Marder, T. B. Angew. Chem. Int. Ed. 2009, 48, 5350.
[23]
Corcoran, E. B.; Williams, A. B.; Hanson, R. N. Org. Lett. 2012, 14, 4630.
[24]
Tan, X.; Zhou, Z.-J.; Zhang, J.-X.; Duan, X.-H. Eur. J. Org. Chem. 2014, 24, 5153.
[25]
Pan, C.-J.; Liu, M.; Duan, X.-H. Chin. J. Org. Chem. 2015, 35, 472. (in Chinese)
[25]
(潘春娇, 刘敏, 梁云, 段新红, 有机化学, 2015, 35, 472. )
[26]
(a) Dubbaka, S. R.; Vogel, P. Angew. Chem. Int. Ed. 2005, 44, 7674.
[26]
(b) Wang, L.; He, W.; Yu, Z. Chem. Soc. Rev. 2013, 42, 599.
[26]
(c) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042.
[27]
(a) Miao, T.; Wang, L. Adv. Synth. Catal. 2014, 356, 967.
[27]
(b) Qiu, D.; Li, S.; Yue, G.; Mao, J.; Xu, B.; Yuan, X.; Ye, F. Tetrahedron Lett. 2021, 85, 153478.
[28]
Lian, C.; Yue, G.; Zhang, H.; Wei, L.; Liu, D.; Liu, S.; Fang, H.; Qiu, D. Tetrahedron Lett. 2018, 59, 4019.
[29]
Yoshida, H.; Honda, Y.; Shirakawa, E.; Hiyama, T. Chem. Commun. 2001, 1880.
[30]
Yoshida, H.; Kubo, T.; Kuriki, H.; Osaka, I.; Takaki, K.; Ooyama, Y. ChemistrySelect 2017, 2, 3212.
[31]
Tanaka, H.; Kuriki, H.; Kubo, T.; Osaka, I.; Yoshida, H. Chem. Commun. 2019, 55, 6503.
[32]
Doster, M. E.; Hatnean, J. A.; Jeftic, T.; Modi, S.; Johnson, S. A. J. Am. Chem. Soc. 2010, 132, 11923.
[33]
(a) Doster, M. E.; Johnson, S. A. Organometallics 2013, 32, 4174.
[33]
(b) Elsby, M. R.; Liu, J.; Zhu, S.; Hu, L.; Huang, G.; Johnson, S. A. Organometallics 2019, 38, 436.
[34]
Komeyama, K.; Asakura, R.; Takaki, K. Org. Biomol. Chem. 2015, 13, 8713.
[35]
Gu, Y.-T.; Martín, R. Angew. Chem. Int. Ed. 2017, 56, 3187.
[36]
Yue, H.-F.; Zhu, C.; Rueping, M. Org. Lett. 2018, 20, 385.
[37]
Wang, X.; Wang, Z.-H.; Liu, L.; Asanuma, Y.; Nishihara, Y. Molecules 2019, 24, 1671.
[38]
Kayumov, M.; Zhao, J.-N.; Mirzaakhmedov, S.; Wang, D.-Y.; Zhang, A. Adv. Synth. Catal. 2020, 362, 776.
[39]
(a) Chopa, A. B.; Lockhart, M. T.; Silbestri, G. Organometallics 2001, 20, 3358.
[39]
(b) Silbestri, G. F.; Lockhart, M. T.; Chopa, A. B. Arkivoc 2011, 210.
[40]
Chopa, A. B.; Lockhart, M. T.; Dorn, V. B. Organometallics 2002, 21, 1425.
[41]
Sakamoto, K.; Nagashima, Y.; Wang, C.; Miyamoto, K.; Tanaka, K.; Uchiyama, M. J. Am. Chem. Soc. 2021, 143, 5629.
[42]
Qiu, D.; Meng, H.; Jin, L.; Wang, S.; Tang, S.-B.; Wang, X.; Mo, F.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2013, 52, 11581.
[43]
Qiu, D.; Wang, S.; Tang, S.-B.; Meng, H.; Jin, L.; Mo, F.; Zhang, Y.; Wang, J. J. Org. Chem. 2014, 79, 1979.
[44]
Chen, K.; He, P.; Zhang, S.; Li, P. Chem. Commun. 2016, 52, 9125.
[45]
(a) Lian, C.; Yue, G.; Mao, J.; Liu, D.; Ding, Y.; Liu, Z.; Qiu, D.; Zhao, X.; Lu, K.; Fagnoni, M.; Protti, S. Org. Lett. 2019, 21, 5187.
[45]
(b) Qiu, D.; Lian, C.; Mao, J.; Fagnoni, M.; Protti, S. J. Org. Chem. 2020, 85, 12813.
[46]
Kim, H.; Kim, H.; Lambert, T. H.; Lin, S. J. Am. Chem. Soc. 2020, 142, 2087.
[47]
Nakao, Y.; Hirata, Y.; Ishihara, S.; Oda, S.; Yukawa, T.; Shirakawa, E.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 15650.
[48]
Chen, Y.-F.; Chen, M.; Liu, Y.-H. Angew. Chem. Int. Ed. 2012, 51, 6181.
[49]
Liu, J.; Xie, X.; Liu, Y.-H. Chem. Commun. 2013, 49, 11794.
[50]
Pati, K.; Michas, C.; Allenger, D.; Piskun, I.; Coutros, P. S.; Gomes, G. P.; Alabugin, I. V. J. Org. Chem. 2015, 80, 11706.
[51]
(a) Harris, T.; Gomes, G. P.; Clark, R. J.; Alabugin, I. V. J. Org. Chem. 2016, 81, 6007.
[51]
(b) Gonzalez-Rodriguez, E.; Abdo, M. A.; Gomes, G. P.; Ayad, S.; White, F. D.; Tsvetkov, N. P.; Hanson, K.; Alabugin, I. V. J. Am. Chem. Soc. 2020, 142, 8352.
Outlines

/