Article

Research on Preparation and Benzene Adsorption Performance of HCDs@MIL-100(Fe) Adsorbents

  • Fang Liu ,
  • Tingting Pan ,
  • Xiurong Ren ,
  • Weiren Bao ,
  • Jiancheng Wang ,
  • Jiangliang Hu
Expand
  • a State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024
    b Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024
    c Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024

Received date: 2022-02-18

  Online published: 2022-05-07

Supported by

Shanxi Province Science Foundation for Key Program(201901D111003(ZD)); Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-TD007)

Abstract

Benzene is a typical volatile organic compound with high photochemical reaction activity, which can seriously harm the environment and human health. Adsorption is an effective method to remove volatile organic compounds (VOCs), and the core of the adsorption method is the development of adsorbents. The high specific surface area and pore volume of metal-organic frameworks (MOFs) make them useful in the field of VOCs adsorption. However, the presence of water lead to a decrease in the adsorption capacity of MOFs. In this work, hydrophobic carbon dots (HCDs)@MIL-100(Fe)-Cx composites were prepared by in situ synthesis of hydrophobic carbon dots with MIL-100(Fe) to improve their benzene adsorption performance. The composite adsorbents were characterized by powder X-ray diffraction (PXRD), N2 adsorption-desorption, thermal gravimetric (TG), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM), the static adsorption capacity of HCDs@MIL-100(Fe)-Cx for benzene and water was determined by gravimetric vapor adsorption analyzer, the dynamic adsorption performance of benzene was investigated by measuring the breakthrough curve of the fixed bed. The results showed that the HCDs were compounded with MIL-100(Fe) by loading or embedding, and the specific surface area of the compounded materials increased significantly and possessed hierarchical pores. The synergistic adsorption of HCDs and MIL-100(Fe) greatly enhanced the adsorption capacity of benzene and the competitive adsorption selectivity of benzene/water. At 25 ℃, when the relative pressure was 0.9, the benzene adsorption capacity of HCDs@MIL-100(Fe)-C1 was 2.9 times that of MIL-100(Fe). When the relative pressure was 0.1, the adsorption capacity of HCDs@MIL-100(Fe)-C1 for benzene was increased by 175.66 mg/g compared with MIL-100(Fe), while the adsorption capacity for water was only increased by 16.87 mg/g, and the competitive adsorption selectivity of HCDs@MIL-100(Fe)-C1 was up to 3.4, while the highest for MIL-100(Fe) was only 2.4. Water contact angle experiments confirmed that HCDs improved the hydrophobicity of MIL-100(Fe). The ability of the composite to capture low concentration of benzene was enhanced; the dynamic breakthrough time of HCDs@MIL-100(Fe)-C1 was 1.4 times that of MIL-100(Fe), and it has perfect cyclic stability. Therefore, HCDs@MIL-100(Fe)-Cx has reference significance for the preparation of adsorbents with high VOCs adsorption performance.

Cite this article

Fang Liu , Tingting Pan , Xiurong Ren , Weiren Bao , Jiancheng Wang , Jiangliang Hu . Research on Preparation and Benzene Adsorption Performance of HCDs@MIL-100(Fe) Adsorbents[J]. Acta Chimica Sinica, 2022 , 80(7) : 879 -887 . DOI: 10.6023/A22020074

References

[1]
Wang, X.; Wu, Y.-S.; Yang, X.; Chen, H.-Y.; Zhang, J.-B.; Ma, X.-X. Chem. Ind. Eng. Prog. 2021, 40, 2813. (in Chinese)
[1]
(王旭, 吴玉帅, 杨欣, 陈汇勇, 张建波, 马晓迅, 化工进展, 2021, 40, 2813.)
[2]
Zhang, Z.; Jiang, Z.; Shangguan, W. Catal. Today 2016, 264, 270.
[3]
Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Chem. Eng. J. 2019, 370, 1128.
[4]
Wang, X.-C.; Wang, S.; Liu, D.-X. Environ. Pollut. Control 2020, 42, 1387. (in Chinese)
[4]
(王学臣, 王帅, 刘大喜, 环境污染与防治, 2020, 42, 1387.)
[5]
Zhu, M.; Tong, Z.; Zhao, Z.; Jiang, Y.; Zhao, Z. Ind. Eng. Chem. Res. 2016, 55, 3765.
[6]
Li, L.; Liu, S.; Liu, J. J. Hazard. Mater. 2011, 192, 683.
[7]
Dai, J.; Zhao, C.; Hu, X.; Chen, D.; Yun, J.; Liu, C.; Zhong, M.; Huang, D.; Cen, C.; Chen, Z. J. Chem. Technol. Biotechnol. 2021, 96, 78.
[8]
Zhou, L.; Zhang, X.; Chen, Y. Mater. Lett. 2017, 197, 167.
[9]
Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Sep. Purif. Technol. 2020, 235, 116213.
[10]
Zhang, H.; Li, G.-L.; Zhang, K.-G.; Liao, C.-Y. Acta Chim. Sinica 2017, 75, 9. (in Chinese)
[10]
(张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 9.)
[11]
Yang, K.; Xue, F.; Sun, Q.; Yue, R.; Lin, D. J. Environ. Chem. Eng. 2013, 1, 713.
[12]
Jayaramulu, K.; Geyer, F.; Schneemann, A.; Kment, S.; Otyepka, M.; Zboril, R.; Vollmer, D.; Fischer, R. A. Adv. Mater. 2019, 31, 1900820.
[13]
Xian, S.; Yu, Y.; Xiao, J.; Zhang, Z.; Xia, Q.; Wang, H.; Li, Z. RSC Adv. 2014, 5, 18274.
[14]
Zhang, J.-W.; Li, P.; Zhang, X.-N.; Ma, X.-J.; Wang, B. Acta Chim. Sinica 2020, 78, 597. (in Chinese)
[14]
(张晋维, 李平, 张馨凝, 马小杰, 王博, 化学学报, 2020, 78, 597.)
[15]
Szczesniak, B.; Choma, J.; Jaroniec, M. Microporous Mesoporous Mater. 2019, 279, 387.
[16]
Ahsan, M. A.; Jabbari, V.; Islam, M. T.; Turley, R. S.; Dominguez, N.; Kim, H.; Castro, E.; Hernandez-Viezcas, J. A.; Curry, M. L.; Lopez, J. Sci. Total Environ. 2019, 673, 306.
[17]
Li, M.; Huang, W.; Tang, B.; Song, F.; Ling, X. J. Nanomater. 2019, 2019, 1.
[18]
Xia, Z.; Shi, B.; Zhu, W.; Lü, C. Chem. Eng. J. 2021, 426, 131794.
[19]
Sun, X.; Lv, D.; Chen, Y.; Wu, Y.; Wu, Q.; Xia, Q.; Li, Z. Energy Fuels 2017, 31, 13985.
[20]
Han, T.; Xiao, Y.; Tong, M.; Huang, H.; Liu, D.; Wang, L.; Zhong, C. Chem. Eng. J. 2015, 275, 134.
[21]
Horcajada, P.; Surble, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Greneche, J. M.; Margiolaki, I.; Ferey, G. Chem. Commun. 2007, 27, 2820.
[22]
Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Adv. Sci. 2019, 6, 1901316.
[23]
Mei, L.; Jiang, T.; Zhou, X.; Li, Y.; Wang, H.; Li, Z. Chem. Eng. J. 2017, 321, 600.
[24]
Zhou, X.; Huang, W.; Shi, J.; Zhao, Z.; Xia, Q.; Li, Y.; Wang, H.; Li, Z. J. Mater. Chem. A 2014, 2, 4722.
[25]
Ma, X.; Wang, W.; Sun, C.; Li, H.; Sun, J.; Liu, X. Sci. Total Environ. 2021, 793, 148622.
[26]
Chen, H.; Yuan, X.; Jiang, L.; Wang, H.; Zeng, G. Sep. Purif. Technol. 2022, 286, 120409.
[27]
Alivand, M. S.; Tehrani, N. H. M. H.; Askarieh, M.; Ghasemy, E.; Esrafili, M. D.; Ahmadi, R.; Anisi, H.; Tavakoli, O.; Rashidi, A. J. Hazard. Mater. 2021, 416, 125973.
[28]
Liu, Y.; Xia, X.-X.; Tan, Y.-Y.; Li, S. Acta Chim. Sinica 2020, 78, 250. (in Chinese)
[28]
(刘洋, 夏潇潇, 谭媛元, 李松, 化学学报, 2020, 78, 250.)
[29]
Sun, X.; Gu, X.; Xu, W.; Chen, W. J.; Xia, Q.; Pan, X.; Zhao, X.; Li, Y.; Wu, Q. H. Front. Chem. 2019, 7, 652.
[30]
Chen, F.-L. M.S. Thesis, East China University of Science and Technology, Shanghai, 2016. (in Chinese)
[30]
(程方亮, 硕士论文,华东理工大学, 上海, 2016.)
[31]
Cheng, F.; An, X.; Zheng, C.; Cao, S. RSC Adv. 2015, 5, 93360.
[32]
Fan, X.; Hu, H.; Qin, J.; Cao, X.; Zhao, R.; Wang, D. Environ. Technol. Innovation 2021, 24, 101809.
[33]
Zhang, Y.; Liu, X.-Y.; Mao, H.-L.; Wang, C.; Du, H.; Cheng, H.; Zhuang, J.-L. J. Mater. Eng. 2019, 47, 71. (in Chinese)
[33]
(张宇, 刘湘粤, 毛会玲, 王晨, 杜嬛, 程琥, 庄金亮, 材料工程, 2019, 47, 71.)
[34]
Li, X.-M. M.S. Thesis, South China University of Technology, Guangzhou, 2013. (in Chinese)
[34]
(李雪梅, 硕士论文,华南理工大学, 广州, 2013.)
[35]
Zhao, Z.; Wang, S.; Yang, Y.; Li, X.; Li, J.; Li, Z. Chem. Eng. J. 2015, 259, 79.
[36]
Li, J.; Kan, L.; Li, J.; Liu, Y. Angew. Chem., Int. Ed. 2020, 59, 19659.
[37]
Wang, G.; Li, N.; Xing, X.; Sun, Y.; Hao, Z. Chemosphere 2020, 247, 125862.
[38]
Zhu, M.; Hu, P.; Tong, Z.; Zhao, Z.; Zhao, Z. Chem. Eng. J. 2017, 313, 1122.
Outlines

/