Review

Tuning the Mechanical Properties of Colloid Particles for Drug Delivery

  • Zhiliang Gao ,
  • Mengqi Li ,
  • Jingcheng Hao ,
  • Jiwei Cui
Expand
  • Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100

Received date: 2022-01-22

  Online published: 2022-05-20

Supported by

National Natural Science Foundation of China(21872085); National Natural Science Foundation of China(22102088); Natural Science Foundation of Shandong Province(ZR202102240400)

Abstract

Colloidal particles are the most common carriers of anticancer drugs. Although various colloidal particles as carriers have been reported, it is still challenging to enhance the drug delivery efficacy. It has been proved that physicochemical properties (e.g., size, shape, structure, and surface chemistry) of colloidal particles play an important role in drug delivery processes, while the influence of the mechanical property of colloidal particles on the drug delivery process is rarely reported and reviewed. In this review, we summarize the preparation and characterization of colloidal particles with different mechanical properties. The influence of the mechanical properties of colloidal particles on blood circulation, tumor accumulation and penetration as well as cell internalization are also highlighted. Furthermore, the challenges and future directions in this field are discussed, which is helpful to understand the influence of mechanical property on the design of colloidal particles as carriers to improve the drug delivery efficacy and bioavailability of nanomedicines.

Cite this article

Zhiliang Gao , Mengqi Li , Jingcheng Hao , Jiwei Cui . Tuning the Mechanical Properties of Colloid Particles for Drug Delivery[J]. Acta Chimica Sinica, 2022 , 80(7) : 1010 -1020 . DOI: 10.6023/A22010042

References

[1]
Brigger, I.; Dubernet, C.; Couvreur, P. Adv. Drug Deliv. Rev. 2002, 54, 631.
[2]
Wang, A. Z.; Langer, R.; Farokhzad, O. C. Annu. Rev. Med. 2012, 63, 185.
[3]
Chen, G.; Roy, I.; Yang, C.; Prasad, P. N. Chem. Rev. 2016, 116, 2826.
[4]
Luo, Z.; Gong, P.; Sheng, Z.; Gao, G.; Zhao, P.; Zheng, M.; Cai, L.; Zhang, P. Chinese Sci. Bull. 2014, 59, 3009.
[5]
An, X. Sci. China Chem. 2015, 45, 340.
[6]
Mitragotri, S.; Burke, P. A.; Langer, R. Nat. Rev. Drug Discov. 2014, 13, 655.
[7]
Myerson, J. W.; Anselmo, A. C.; Liu, Y.; Mitragotri, S.; Eckmann, D. M.; Muzykantov, V. R. Adv. Drug Deliv. Rev. 2016, 99, 97.
[8]
Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Nat. Rev. Cancer 2017, 17, 20.
[9]
Min, Y.; Caster, J. M.; Eblan, M. J.; Wang, A. Z. Chem. Rev. 2015, 115, 11147.
[10]
Yue, H.; Ma, G. Acta Chim. Sinica 2021, 79, 1244. (in Chinese)
[10]
(岳华, 马光辉, 化学学报, 2021, 79, 1244.)
[11]
Venditto, V. J.; Szoka, F. C. Jr. Adv. Drug Deliv. Rev. 2013, 65, 80.
[12]
Liu, J.; Li, M.; Luo, Z.; Dai, L.; Guo, X.; Cai, K. Nano Today 2017, 15, 56.
[13]
Sun, Q.; Zhou, Z.; Qiu, N.; Shen, Y. Adv. Mater. 2017, 29, 1606628.
[14]
Chen, S.; Liang, X. J. Sci. China Life Sci. 2018, 61, 371.
[15]
Cui, J.; Richardson, J. J.; Bjornmalm, M.; Faria, M.; Caruso, F. Acc. Chem. Res. 2016, 49, 1139.
[16]
Albanese, A.; Tang, P. S.; Chan, W. C. Annu. Rev. Biomed. Eng. 2012, 14, 1.
[17]
Wang, J.; Mao, W.; Lock, L. L.; Tang, J.; Sui, M.; Sun, W.; Cui, H.; Xu, D.; Shen, Y. ACS Nano 2015, 9, 7195.
[18]
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Nat. Nanotechnol. 2011, 6, 815.
[19]
Li, H. J.; Du, J. Z.; Liu, J.; Du, X. J.; Shen, S.; Zhu, Y. H.; Wang, X.; Ye, X.; Nie, S.; Wang, J. ACS Nano 2016, 10, 6753.
[20]
Sun, Q.; Ojha, T.; Kiessling, F.; Lammers, T.; Shi, Y. Biomacromolecules 2017, 18, 1449.
[21]
Wang, H.-X.; Zuo, Z.-Q.; Du, J.-Z.; Wang, Y.-C.; Sun, R.; Cao, Z.-T.; Ye, X.-D.; Wang, J.-L.; Leong, K. W.; Wang, J. Nano Today 2016, 11, 133.
[22]
Hui, Y.; Yi, X.; Hou, F.; Wibowo, D.; Zhang, F.; Zhao, D.; Gao, H.; Zhao, C. X. ACS Nano 2019, 13, 7410.
[23]
Li, M.; Gao, Z.; Cui, J. Langmuir 2022, 38, 6780.
[24]
Li, Z.; Xiao, C.; Yong, T.; Li, Z.; Gan, L.; Yang, X. Chem. Soc. Rev. 2020, 49, 2273.
[25]
Plamper, F. A.; Richtering, W. Acc. Chem. Res. 2017, 50, 131.
[26]
Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Adv. Mater. 2006, 18, 1345.
[27]
Anselmo, A. C.; Zhang, M.; Kumar, S.; Vogus, D. R.; Menegatti, S.; Helgeson, M. E.; Mitragotri, S. ACS Nano 2015, 9, 3169.
[28]
Molina, M.; Asadian-Birjand, M.; Balach, J.; Bergueiro, J.; Miceli, E.; Calderon, M. Chem. Soc. Rev. 2015, 44, 6161.
[29]
Wang, Y.; Guo, L.; Dong, S.; Cui, J.; Hao, J. Adv. Colloid Interface Sci. 2019, 266, 1.
[30]
Song, D.; Cui, J.; Ju, Y.; Faria, M.; Sun, H.; Howard, C. B.; Thurecht, K. J.; Caruso, F. ACS Appl. Mater. Interfaces 2019, 11, 28720.
[31]
Cui, J.; Alt, K.; Ju, Y.; Gunawan, S. T.; Braunger, J. A.; Wang, T. Y.; Dai, Y.; Dai, Q.; Richardson, J. J.; Guo, J.; Bjornmalm, M.; Hagemeyer, C. E.; Caruso, F. Biomacromolecules 2019, 20, 3592.
[32]
Best, J. P.; Cui, J.; Mullner, M.; Caruso, F. Langmuir 2013, 29, 9824.
[33]
Cui, J.; De Rose, R.; Best, J. P.; Johnston, A. P.; Alcantara, S.; Liang, K.; Such, G. K.; Kent, S. J.; Caruso, F. Adv. Mater. 2013, 25, 3468.
[34]
Cui, J.; Bjornmalm, M.; Liang, K.; Xu, C.; Best, J. P.; Zhang, X.; Caruso, F. Adv. Mater. 2014, 26, 7295.
[35]
Cui, J.; Wang, Y.; Postma, A.; Hao, J.; Hosta-Rigau, L.; Caruso, F. Adv. Funct. Mater. 2010, 20, 1625.
[36]
Zhang, L.; Cao, Z.; Li, Y.; Ella-Menye, J.-R.; Bai, T.; Jiang, S. ACS Nano 2012, 6, 6681.
[37]
Key, J.; Palange, A. L.; Gentile, F.; Aryal, S.; Stigliano, C.; Mascolo, D. D.; Rosa, E. D.; Cho, M.; Lee, Y.; Singh, J.; Decuzzi, P. ACS Nano 2015, 9, 11628.
[38]
Merkel, T. J.; Jones, S. W.; Herlihy, K. P.; Kersey, F. R.; Shields, A. R.; Napier, M.; Luft, J. C.; Wu, H.; Zamboni, W. C.; Wang, A. Z.; Bear, J. E.; DeSimone, J. M. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 586.
[39]
Gaitzsch, J.; Huang, X.; Voit, B. Chem. Rev. 2016, 116, 1053.
[40]
Delcea, M.; Mohwald, H.; Skirtach, A. G. Adv. Drug Deliv. Rev. 2011, 63, 730.
[41]
Wang, Q.; Gao, Z.; Zhao, K.; Zhang, P.; Zhong, Q.-Z.; Yu, Q.; Zhai, S.; Cui, J. Chin. Chem. Lett. 2022, 33, 1917.
[42]
Mertz, D.; Cui, J.; Yan, Y.; Devlin, G.; Chaubaroux, C.; AlexandreDochter; RoxaneAlles; Lavalle, P.; Voegel, J. C.; Blencowe, A.; Auffinger, P.; Caruso, F. ACS Nano 2012, 6, 7584.
[43]
Richardson, J. J.; Cui, J.; Bjornmalm, M.; Braunger, J. A.; Ejima, H.; Caruso, F. Chem. Rev. 2016, 116, 14828.
[44]
Richardson, J. J.; Bjornmalm, M.; Caruso, F. Science 2015, 348, aaa2491.
[45]
Hui, Y.; Wibowo, D.; Liu, Y.; Ran, R.; Wang, H. F.; Seth, A.; Middelberg, A. P. J.; Zhao, C. X. ACS Nano 2018, 12, 2846.
[46]
Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; Koeverden, M. P. v.; Such, G. K.; Cui, J.; Caruso, F. Science 2013, 341, 154.
[47]
Guo, J.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J. J.; Yan, Y.; Peter, K.; von Elverfeldt, D.; Hagemeyer, C. E.; Caruso, F. Angew. Chem. Int. Ed. 2014, 53, 5546.
[48]
Rahim, M. A.; Bjornmalm, M.; Bertleff-Zieschang, N.; Ju, Y.; Mettu, S.; Leeming, M. G.; Caruso, F. ACS Appl. Mater. Interfaces 2018, 10, 7632.
[49]
Lin, G.; Rahim, M. A.; Leeming, M. G.; Cortez-Jugo, C.; Besford, Q. A.; Ju, Y.; Zhong, Q. Z.; Johnston, S. T.; Zhou, J.; Caruso, F. ACS Appl. Mater. Interfaces 2019, 11, 17714.
[50]
Pei, H.; Bai, Y.; Guo, J.; Gao, Z.; Dai, Q.; Yu, Q.; Cui, J. Chin. Chem. Lett. 2020, 31, 505.
[51]
Cai, Z.; Zhang, Y.; Jiang, L.; Zhu, J. Acta Chim. Sinica 2021, 79, 481. (in Chinese)
[51]
(蔡政, 张颖雯, 姜立萍, 朱俊杰, 化学学报, 2021, 79, 481.)
[52]
Dai, Z.; Yu, M.; Yi, X.; Wu, Z.; Tian, F.; Miao, Y.; Song, W.; He, S.; Ahmad, E.; Guo, S.; Zhu, C.; Zhang, X.; Li, Y.; Shi, X.; Wang, R.; Gan, Y. ACS Nano 2019, 13, 7676.
[53]
Zhang, L.; Feng, Q.; Wang, J.; Zhang, S.; Ding, B.; Wei, Y.; Dong, M.; Ryu, J.-Y.; Yoon, T.-Y.; Shi, X.; Sun, J.; Jiang, X. ACS Nano 2015, 9, 9912.
[54]
Sun, J.; Zhang, L.; Wang, J.; Feng, Q.; Liu, D.; Yin, Q.; Xu, D.; Wei, Y.; Ding, B.; Shi, X.; Jiang, X. Adv. Mater. 2015, 27, 1402.
[55]
Yu, M.; Xu, L.; Tian, F.; Su, Q.; Zheng, N.; Yang, Y.; Wang, J.; Wang, A.; Zhu, C.; Guo, S.; Zhang, X.; Gan, Y.; Shi, X.; Gao, H. Nat. Commun. 2018, 9, 2607.
[56]
Guo, P.; Liu, D.; Subramanyam, K.; Wang, B.; Yang, J.; Huang, J.; Auguste, D. T.; Moses, M. A. Nat. Commun. 2018, 9, 130.
[57]
Bippes, C. A.; Muller, D. J. Rep. Prog. Phys. 2011, 74, 086601.
[58]
Cappella, B.; Dietler, G. Surf. Sci. Rep. 1999, 34, 1.
[59]
Sahin, O.; Magonov, S.; Su, C.; Quate, C. F.; Solgaard, O. Nat. Nanotechnol. 2007, 2, 507.
[60]
Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nat. Nanotechnol. 2007, 2, 751.
[61]
Petros, R. A.; DeSimone, J. M. Nat. Rev. Drug Discov. 2010, 9, 615.
[62]
Dai, Q.; Bertleff-Zieschang, N.; Braunger, J. A.; Bjornmalm, M.; Cortez-Jugo, C.; Caruso, F. Adv. Healthc. Mater. 2018, 7, 1700575.
[63]
Cai, R.; Chen, C. Adv. Mater. 2019, 31, e1805740.
[64]
Nance, E.; Zhang, X. C.; Shih, T.-Y.; Xu, Q.; Schuster, B. S.; Hanes, J. ACS Nano 2014, 8, 10655.
[65]
Liu, W.; Zhou, X.; Mao, Z.; Yu, D.; Wang, B.; Gao, C. Soft Matter 2012, 8, 9235.
[66]
Palomba, R.; Palange, A. L.; Rizzuti, I. F.; Ferreira, M.; Cervadoro, A.; Barbato, M. G.; Canale, C.; Decuzzi, P. ACS Nano 2018, 12, 1433.
[67]
Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J.; Phillips, B.; Carter, M. B.; Carroll, N. J.; Jiang, X.; Dunphy, D. R.; Willman, C. L.; Petsev, D. N.; Evans, D. G.; Parikh, A. N.; Chackerian, B.; Wharton, W.; Peabody, D. S.; Brinker, C. J. Nat. Mater. 2011, 10, 389.
[68]
Hu, C.-M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 10980.
[69]
Su, Y.; Xie, Z.; Kim, G. B.; Dong, C.; Yang, J. ACS Biomater. Sci. Eng. 2015, 1, 201.
[70]
Liang, Q.; Bie, N.; Yong, T.; Tang, K.; Shi, X.; Wei, Z.; Jia, H.; Zhang, X.; Zhao, H.; Huang, W.; Gan, L.; Huang, B.; Yang, X. Nat. Biomed. Eng. 2019, 3, 729.
[71]
Torchilin, V. Adv. Drug Deliv. Rev. 2011, 63, 131.
[72]
Cui, J.; Rose, R. D.; Alt, K.; Alcantara, S.; Paterson, B. M.; Liang, K.; Hu, M.; Richardson, J. J.; Yan, Y.; Jeffery, C. M.; Price, R. I.; Peter, K.; Hagemeyer, C. E.; Donnelly, P. S.; Kent, S. J.; Caruso, F. ACS Nano 2015, 9, 1571.
[73]
Shukla, S.; Eber, F. J.; Nagarajan, A. S.; DiFranco, N. A.; Schmidt, N.; Wen, A. M.; Eiben, S.; Twyman, R. M.; Wege, C.; Steinmetz, N. F. Adv. Healthc. Mater. 2015, 4, 874.
[74]
Wang, G.; Chen, Y.; Wang, P.; Wang, Y.; Hong, H.; Li, Y.; Qian, J.; Yuan, Y.; Yu, B.; Liu, C. Acta Biomater. 2016, 29, 248.
[75]
Sun, Q.; Sun, X.; Ma, X.; Zhou, Z.; Jin, E.; Zhang, B.; Shen, Y.; Van Kirk, E. A.; Murdoch, W. J.; Lott, J. R.; Lodge, T. P.; Radosz, M.; Zhao, Y. Adv. Mater. 2014, 26, 7615.
[76]
Ruan, S.; Cao, X.; Cun, X.; Hu, G.; Zhou, Y.; Zhang, Y.; Lu, L.; He, Q.; Gao, H. Biomaterials 2015, 60, 100.
[77]
Popovic, Z.; Liu, W.; Chauhan, V. P.; Lee, J.; Wong, C.; Greytak, A. B.; Insin, N.; Nocera, D. G.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Angew. Chem. Int. Ed. 2010, 49, 8649.
[78]
Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S.; Wang, J. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 4164.
[79]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Chem. Soc. Rev. 2017, 46, 4218.
[80]
Stern, T.; Kaner, I.; Laser Zer, N.; Shoval, H.; Dror, D.; Manevitch, Z.; Chai, L.; Brill-Karniely, Y.; Benny, O. J. Control. Release 2017, 257, 40.
[81]
Sun, H.; Wong, E. H. H.; Yan, Y.; Cui, J.; Dai, Q.; Guo, J.; Qiao, G. G.; Caruso, F. Chem. Sci. 2015, 6, 3505.
[82]
Gu, R.; Mao, J.; Yan, L.-T. ACS Nano 2013, 7, 10646.
[83]
Zhang, W.; Han, B.; Lai, X.; Xiao, C.; Xu, S.; Meng, X.; Li, Z.; Meng, J.; Wen, T.; Yang, X.; Liu, J.; Xu, H. Chem. Commun. 2020, 56, 1255.
Outlines

/