Key Advances of High-voltage Solid-state Lithium Metal Batteries Based on Poly(ethylene oxide) Polymer Electrolytes
Received date: 2022-07-18
Online published: 2022-09-13
Supported by
Key-Area Research and Development Program of Guangdong Province(2020B090919005); National Natural Science Foundation of China(52073298); Youth Innovation Promotion Association of CAS(2020217); Natural Science Foundation of Shandong Province(ZR2019BEM037)
Traditional lithium-ion batteries employing carbonate-based liquid electrolytes might suffer from safety hazards such as leakage, combustion and explosion under abused conditions. In comparison, poly(ethylene oxide) (PEO) based solid-state polymer electrolytes can significantly enhance the safety performance of lithium batteries owing to their intrinsic safety. In addition, PEO can also be made into specific shapes to meet the harsh requirements of special fields owing of their excellent plasticity. More importantly, PEO-based solid-state polymer electrolytes possess superior interfacial compatibility with lithium metal anodes, endowing PEO a very promising solid polymer electrolyte (SPE) for solid-state lithium metal batteries. However, the low electrochemical oxidation potential of PEO-based solid polymer electrolytes makes them challenge to accommodate high-voltage cathodes (≥4 V), which greatly limits the energy density of solid-state polymer lithium metal batteries. Recently, through the unremitting efforts of researchers, PEO based solid-state polymer electrolytes have made a series of significant scientific progress in the field of high-voltage solid-state lithium metal batteries. Herein, this review presents an overview on the scientific challenges, fundamental mechanisms, and design strategies for high-voltage solid-state lithium batteries based on poly(ethylene oxide) all-solid-state polymer electrolytes: (1) constructing a ultra-thin layer on high-voltage cathodes, (2) surface coating of high-voltage cathode particles, (3) surface coating of carbon black, (4) employing carboxyl-rich polymer binders, (5) the design of asymmetric SPE architecture, (6) in-situ formation of high-concentration polymeric interlayer, (7) the introduction of -OCH3 group into PEO, (8) (oxalato)borate salts as additive. At the end of this review, the potential challenges and development trend of PEO-based solid-state polymer electrolytes in high-voltage lithium metal batteries are also elaborated.
Songwei Tian , Lixue Zhou , Bingqian Zhang , Jianjun Zhang , Xiaofan Du , Hao Zhang , Sijia Hu , Zhixiang Yuan , Pengxian Han , Suli Li , Wei Zhao , Xinhong Zhou , Guanglei Cui . Key Advances of High-voltage Solid-state Lithium Metal Batteries Based on Poly(ethylene oxide) Polymer Electrolytes[J]. Acta Chimica Sinica, 2022 , 80(10) : 1410 -1423 . DOI: 10.6023/A22070314
[1] | Cao, X.; Jia, H.; Xu, W.; Zhang, J.-G. J. Electrochem. Soc. 2021, 168, 010522. |
[2] | Jiang, L. L.; Yan, C.; Yao, Y. X.; Cai, W.; Huang, J. Q.; Zhang, Q. Angew. Chem., Int. Ed. 2021, 60, 3402. |
[3] | Liu, W.; Chen, Z.; Zhang, Z.; Jiang, P.; Chen, Y.; Paek, E.; Wang, Y.; Mitlin, D. Energ. Environ. Sci. 2021, 14, 382. |
[4] | Nikiforidis, G.; Raghibi, M.; Sayegh, A.; Anouti, M. J. Phys. Chem. Lett. 2021, 12, 1911. |
[5] | Wei, C.; Tan, L.; Tao, Y.; An, Y.; Tian, Y.; Jiang, H.; Feng, J.; Qian, Y. Energy Storage Mater. 2021, 34, 12. |
[6] | Chai, J.; Zhang, J.; Hu, P.; Ma, J.; Du, H.; Yue, L.; Zhao, J.; Wen, H.; Liu, Z.; Cui, G.; Chen, L. J. Mater. Chem. A 2016, 4, 5191. |
[7] | Chatterjee, K.; Pathak, A. D.; Lakma, A.; Sharma, C. S.; Sahu, K. K.; Singh, A. K. Sci. Rep. 2020, 10, 9606. |
[8] | Hou, J.; Lu, L.; Wang, L.; Ohma, A.; Ren, D.; Feng, X.; Li, Y.; Li, Y.; Ootani, I.; Han, X.; Ren, W.; He, X.; Nitta, Y.; Ouyang, M. Nat. Commun. 2020, 11, 5100. |
[9] | Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Nat. Energy 2017, 3, 22. |
[10] | Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Sci. Adv. 2018, 4, 11. |
[11] | He, M.; Su, C.-C.; Peebles, C.; Zhang, Z. J. Electrochem. Soc. 2021, 168, 010505. |
[12] | Köps, L.; Leibing, C.; Hess, L. H.; Balducci, A. J. Electrochem. Soc. 2021, 168, 010513. |
[13] | Taskovic, T.; Thompson, L. M.; Eldesoky, A.; Lumsden, M. D.; Dahn, J. R. J. Electrochem. Soc. 2021, 168, 010514. |
[14] | Xia, L.; Miao, H.; Wang, F.; Zhang, C.; Wang, J.; Zhao, J.; Yuan, J. Int. J. Energy Res. 2021, 45, 9936. |
[15] | Dong, T.; Zhang, J.; Xu, G.; Chai, J.; Du, H.; Wang, L.; Wen, H.; Zang, X.; Du, A.; Jia, Q.; Zhou, X.; Cui, G. Energ. Environ. Sci. 2018, 11, 1197. |
[16] | Yu, X.; Wang, L.; Ma, J.; Sun, X.; Zhou, X.; Cui, G. Adv. Energy Mater. 2020, 10, 1903939. |
[17] | Zhou, Q.; Zhang, J.; Cui, G. Macromol. Mater. Eng. 2018, 303, 1800337. |
[18] | Cheng, H.; Zhu, C.-B.; Yang, Y. Acta Chim. Sinica 2007, 65, 2832. (in Chinese) |
[18] | (程琥, 朱昌宝, 杨勇, 化学学报, 2007, 65, 2832.) |
[19] | Liao, R.-X.; Shen, Z.-C.; Xie, W.-H.; Zhong, J.-W.; Shi, Z.-C. Sci. Sinica Chim. 2022, 52, 38. (in Chinese) |
[19] | (廖睿熹, 沈之川, 谢文浩, 钟嘉炜, 施志聪, 中国科学:化学, 2022, 52, 38.) |
[20] | Zheng, P.-X.; Wang, X.-W.; Wang, D.; Yu, Z.-W. Acta Polym. Sinica 2021, 52, 94. (in Chinese) |
[20] | (郑鹏轩, 王向伟, 王栋, 于志伟, 高分子学报, 2021, 52, 94.) |
[21] | Wang, X.; Yang, J.-J.; Shao, L.; Li, J.-J.; Zhao, W.-F.; Ma, A.-J.; Zhang, G.; Chen, W.-X. Sci. Sinica Chim. 2019, 49, 360. (in Chinese) |
[21] | (汪勋, 杨晶晶, 邵乐, 李娇娇, 赵卫峰, 马爱洁, 张改, 陈卫星, 中国科学:化学, 2019, 49, 360.) |
[22] | Wan, J.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; Zhang, X.; Zong, L.; Wang, J.; Chen, L. Q.; Qin, J.; Cui, Y. Nat. Nanotechnol. 2019, 14, 705. |
[23] | Wu, H.; Xu, Y.; Ren, X.; Liu, B.; Engelhard, M. H.; Ding, M. S.; El-Khoury, P. Z.; Zhang, L.; Li, Q.; Xu, K.; Wang, C.; Zhang, J.-G.; Xu, W. Adv. Energy Mater. 2019, 9, 1902108. |
[24] | Xu, S.; Sun, Z.; Sun, C.; Li, F.; Chen, K.; Zhang, Z.; Hou, G.; Cheng, H.-M.; Li, F. Adv. Funct. Mater. 2020, 30, 2007172. |
[25] | Ma, J.; Liu, Z.; Chen, B.; Wang, L.; Yue, L.; Liu, H.; Zhang, J.; Liu, Z.; Cui, G. J. Electrochem. Soc. 2017, 164, A3454. |
[26] | Qiu, J.; Liu, X.; Chen, R.; Li, Q.; Wang, Y.; Chen, P.; Gan, L.; Lee, S.-J.; Nordlund, D.; Liu, Y.; Yu, X.; Bai, X.; Li, H.; Chen, L. Adv. Funct. Mater. 2020, 30, 1909392. |
[27] | Nie, K.; Wang, X.; Qiu, J.; Wang, Y.; Yang, Q.; Xu, J.; Yu, X.; Li, H.; Huang, X.; Chen, L. ACS Energy Lett. 2020, 5, 826. |
[28] | Li, Z.; Li, A.; Zhang, H.; Lin, R.; Jin, T.; Cheng, Q.; Xiao, X.; Lee, W.-K.; Ge, M.; Zhang, H.; Zangiabadi, A.; Waluyo, I.; Hunt, A.; Zhai, H.; Borovilas, J. J.; Wang, P.; Yang, X.-Q.; Chuan, X.; Yang, Y. Nano Energy 2020, 72, 104655. |
[29] | Liang, J. N.; Sun, Y. P.; Zhao, Y.; Sun, Q.; Luo, J.; Zhao, F. P.; Lin, X. T.; Li, X.; Li, R. Y.; Zhang, L.; Lu, S. G.; Huang, H.; Sun, X. L. J. Mater. Chem. A 2020, 8, 2769. |
[30] | Liang, J.; Chen, D.; Adair, K.; Sun, Q.; Holmes, N. G.; Zhao, Y.; Sun, Y.; Luo, J.; Li, R.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Zhang, X.; Singh, C. V.; Sun, X. Adv. Energy Mater. 2021, 11, 2002455. |
[31] | Zhou, W.; Wang, Z.; Pu, Y.; Li, Y.; Xin, S.; Li, X.; Chen, J.; Goodenough, J. B. Adv. Mater. 2019, 31, 1805574. |
[32] | Wang, C.; Wang, T.; Wang, L.; Hu, Z.; Cui, Z.; Li, J.; Dong, S.; Zhou, X.; Cui, G. Adv. Sci. 2019, 6, 1901036. |
[33] | Bae, J.; Zhang, X.; Guo, X.; Yu, G. Nano Lett. 2021, 21, 1184. |
[34] | Yang, X.; Jiang, M.; Gao, X.; Bao, D.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C.; Liang, J.; Li, W.; Li, J.; Liu, Y.; Huang, H.; Zhang, L.; Lu, S.; Lu, Q.; Li, R.; Singh, C. V.; Sun, X. Energ. Environ. Sci. 2020, 13, 1318. |
[35] | Samson, H.; Liu, C.; Zhu, F. Y.; Zhao, L.; Fan, R.; Chung, C. Y.; Tang, J. N.; Zeng, X. R.; He, Y. B. Nano Energy 2021, 80, 105562. |
[36] | Wang, L.; Ma, J.; Wang, C.; Yu, X.; Liu, R.; Jiang, F.; Sun, X.; Du, A.; Zhou, X.; Cui, G. Adv. Sci. 2019, 6, 1900355. |
[37] | Xu, G.; Pang, C.; Chen, B.; Ma, J.; Wang, X.; Chai, J.; Wang, Q.; An, W.; Zhou, X.; Cui, G.; Chen, L. Adv. Energy Mater. 2018, 8, 1701398. |
[38] | Xia, Y.; Fujieda, T.; Tatsumi, K.; Prosini, P.; Sakai, T. J. Power Sources 2001, 92, 234. |
[39] | Han, Y.; Zhu, X.; He, Y.; Wang, C. Adv. Energy Mater. 2016, 6, 1501590. |
/
〈 |
|
〉 |