Review

Advances in Hydroxyl Free Radical Assisted Synthesis of Zeolite

  • Hongdan Zhang ,
  • Xinyu Lan ,
  • Peng Cheng
Expand
  • Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China

Received date: 2022-10-10

  Online published: 2022-11-04

Supported by

National Natural Science Foundation of China(22172102); National Natural Science Foundation of China(21701117); National Natural Science Foundation of China(22202137); LiaoNing Revitalization Talents Program(XLYC2007190); Shenyang Young and Middle-aged Scientific and Technological Innovation Talents Support Plan(RC210044)

Abstract

As one of the most important solid catalysts in chemical industry, zeolites are widely used in different fields. How to prepare zeolites greenly and efficiently has become a research hot issue with the increase of consumption year by year. Hydroxyl free radical is a highly active species, which can promote the depolymerization and repolymerization of aluminosilicates in the zeolite initial gel, and then accelerating the zeolite crystallization process. Besides accelerating the crystallization of zeolite, many studies have shown hydroxyl free radicals have other functions in zeolite synthesis. In this review, the role of hydroxyl free radicals in the synthesis of zeolites is systematically introduced via different generation methods. The challenges of the hydroxyl free radical assisted strategy are put forward, and its development directions are prospected.

Cite this article

Hongdan Zhang , Xinyu Lan , Peng Cheng . Advances in Hydroxyl Free Radical Assisted Synthesis of Zeolite[J]. Acta Chimica Sinica, 2023 , 81(1) : 100 -110 . DOI: 10.6023/A22100420

References

[1]
(a) Li, Y.; Yu, J. Nat. Rev. Mater. 2021, 6, 1156.
[1]
(b) Xu, H.; Wu, P. Natl. Sci. Rev. 2022, 9, nwac045.
[1]
(c) Deneyer, A.; Ke, Q.; Devos, J.; Dusselier, M. Chem. Mater. 2020, 32, 4884.
[1]
(d) Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663.
[1]
(e) Hu, C.; Yan, W.; Xu, R. Acta Chim. Sinica 2017, 75, 679. (in Chinese)
[1]
( 胡成玉, 闫文付, 徐如人, 化学学报, 2017, 75, 679.)
[2]
Li, Y.; Li, L.; Yu, J. Chem 2017, 3, 928.
[3]
(a) Liu, Z.; Zhu, J.; Wakihara, T.; Okubo, T. Inorg. Chem. Front. 2019, 6, 14.
[3]
(b) Zhang, M. T.; Yan, T. T.; Dai, W. L.; Guan, N. J.; Li, L. D. Acta Chim. Sinica 2020, 78, 1404. (in Chinese)
[3]
( 张梦婷, 颜婷婷, 戴卫理, 关乃佳, 李兰冬, 化学学报, 2020, 78, 1404.)
[3]
(c) He, L.; Yao, Q. X.; Sun, M.; Ma, X. X. Acta Chim. Sinica 2022, 80, 180. (in Chinese)
[3]
( 何磊, 么秋香, 孙鸣, 马晓迅, 化学学报, 2022, 80, 180.)
[4]
(a) Dapsens, P. Y.; Mondelli, C.; Pérez-Ramírez, J. Chem. Soc. Rev. 2015, 44, 7025.
[4]
(b) Ennaert, T.; Van Aelst, J.; Dijkmans, J.; De Clercq, R.; Schutyser, W.; Dusselier, M.; Verboekend, D.; Sels, B. F. Chem. Soc. Rev. 2016, 45, 584.
[5]
(a) Sun, Q.; Wang, N.; Bing, Q.; Si, R.; Liu, J.; Bai, R.; Zhang, P.; Jia, M.; Yu, J. Chem 2017, 3, 477.
[5]
(b) Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Science 2017, 356, 523.
[6]
Lefebvre, D.; Tezel, F. H. Renew. Sust. Energ. Rev. 2017, 67, 116.
[7]
(a) Gao, P.; Li, S.; Bu, X.; Dang, S.; Liu, Z.; Wang, H.; Zhong, L.; Qiu, M.; Yang, C.; Cai, J.; Wei, W.; Sun, Y. Nat. Chem. 2017, 9, 1019.
[7]
(b) Guo, P.; Shin, J.; Greenaway, A. G.; Min, J. G.; Su, J.; Choi, H. J.; Liu, L.; Cox, P. A.; Hong, S. B.; Wright, P. A.; Zou, X. Nature 2015, 524, 74.
[8]
(a) Paolucci, C.; Khurana, I.; Parekh, A. A.; Li, S.; Shih, A. J.; Li, H.; Di Iorio, J. R.; Albarracin-Caballero, J. D.; Yezerets, A.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H.; Schneider, W. F.; Gounder, R. Science 2017, 357, 898.
[8]
(b) Chen, C.; Wu, Q.; Chen, F.; Zhang, L.; Pan, S.; Bian, C.; Zheng, X.; Meng, X.; Xiao, F. S. J. Mater. Chem. A 2015, 3, 5556.
[9]
(a) Jamali, S. H.; Vlugt, T. J. H.; Lin, L.-C. J. Phys. Chem. C 2017, 121, 11273.
[9]
(b) Lee, H. Y.; Kim, H. S.; Jeong, H.-K.; Park, M.; Chung, D.-Y.; Lee, K.-Y.; Lee, E.-H.; Lim, W. T. J. Phys. Chem. C 2017, 121, 10594.
[10]
Barrer, R. M. J. Chem. Soc. (Resumed) 1948, 2158.
[11]
Meng, X.; Xiao, F. S. Chem. Rev. 2014, 114, 1521.
[12]
(a) Wheatley, P. S.; Allan, P. K.; Teat, S. J.; Ashbrook, S. E.; Morris, R. E. Chem. Sci. 2010, 1, 483.
[12]
(b) Liu, L.; Li, Y.; Wei, H.; Dong, M.; Wang, J.; Slawin, A. M.; Li, J.; Dong, J.; Morris, R. E. Angew. Chem. Int. Ed. 2009, 48, 2206.
[13]
(a) Cai, R.; Liu, Y.; Gu, S.; Yan, Y. J. Am. Chem. Soc. 2010, 132, 12776.
[13]
(b) Xu, Y. P.; Tian, Z. J.; Wang, S. J.; Hu, Y.; Wang, L.; Wang, B. C.; Ma, Y. C.; Hou, L.; Yu, J. Y.; Lin, L. W. Angew. Chem. Int. Ed. 2006, 45, 3965.
[14]
(a) Honda, K.; Yashiki, A.; Itakura, M.; Ide, Y.; Sadakane, M.; Sano, T. Microporous Mesoporous Mater. 2011, 142, 161.
[14]
(b) Yashiki, A.; Honda, K.; Fujimoto, A.; Shibata, S.; Ide, Y.; Sadakane, M.; Sano, T. J. Cryst. Growth 2011, 325, 96.
[15]
Ren, L.; Wu, Q.; Yang, C.; Zhu, L.; Li, C.; Zhang, P.; Zhang, H.; Meng, X.; Xiao, F. S. J. Am. Chem. Soc. 2012, 134, 15173.
[16]
Lee, H.; Zones, S. I.; Davis, M. E. Nature 2003, 425, 385.
[17]
(a) Ng, E. P.; Chateigner, D.; Bein, T.; Valtchev, V.; Mintova, S. Science 2012, 335, 70.
[17]
(b) Kamimura, Y.; Itabashi, K.; Okubo, T. Microporous Mesoporous Mater. 2012, 147, 149.
[18]
Wang, J.; Zhang, Q.; Yan, W.; Yu, J. Chem. J. Chinese U. 2021, 42, 11.
[19]
Feng, G.; Cheng, P.; Yan, W.; Boronat, M.; Li, X.; Su, J. H.; Wang, J.; Li, Y.; Corma, A.; Xu, R.; Yu, J. Science 2016, 351, 1188.
[20]
Shi, D.; Xu, L.; Chen, P.; Ma, T.; Lin, C.; Wang, X.; Xu, D.; Sun, J. Chem. Commun. 2019, 55, 1390.
[21]
(a) Eliá?ová, P.; Opanasenko, M.; Wheatley, P. S.; Shamzhy, M.; Mazur, M.; Nachtigall, P.; Roth, W. J.; Morris, R. E.; ?ejka, J. Chem. Soc. Rev. 2015, 44, 7177.
[21]
(b) Roth, W. J.; Nachtigall, P.; Morris, R. E.; Wheatley, P. S.; Seymour, V. R.; Ashbrook, S. E.; Chlubná, P.; Grajciar, L.; Polo?ij, M.; Zukal, A. Nat. Chem. 2013, 5, 628.
[21]
(c) Xu, L.; Sun, J. Adv. Energy Mater. 2016, 6, 1600441.
[22]
Feng, G.; Wang, J.; Boronat, M.; Li, Y.; Su, J. H.; Huang, J.; Ma, Y.; Yu, J. J. Am. Chem. Soc. 2018, 140, 4770.
[23]
Yu, S.; Wu, S.; Liu, Y.; Li, L.; Ge, X. J. Taiwan Inst. Chem. E 2020, 109, 26.
[24]
(a) Fan, W.; Duan, R. G.; Yokoi, T.; Wu, P.; Kubota, Y.; Tatsumi, T. J. Am. Chem. Soc. 2008, 130, 10150.
[24]
(b) Zhang, T.; Chen, X.; Chen, G.; Chen, M.; Bai, R.; Jia, M.; Yu, J. J. Mater. Chem. A 2018, 6, 9473.
[25]
Lin, D.; Zhang, Q.; Qin, Z.; Li, Q.; Feng, X.; Song, Z.; Cai, Z.; Liu, Y.; Chen, X.; Chen, D.; Mintova, S.; Yang, C. Angew. Chem. Int. Ed. 2021, 60, 3443.
[26]
Li, Z.; Wang, Y.; Zhang, J.; Wang, D.; Ma, W. Catal. Commun. 2017, 90, 87.
[27]
(a) Zhao, D.; Armutlulu, A.; Chen, Y.; Wang, Y.; Xie, R. J. Clean. Prod. 2021, 319, 128682.
[27]
(b) Chen, Y.; Armutlulu, A.; Jiang, X.; Lai, B.; Jiang, W.; Xie, R.; Crittenden, J. C. ACS Sustain. Chem. Eng. 2021, 9, 5085.
[28]
Lutz, W. Adv. Mater. Sci. Eng. 2014, 2014, 724248.
[29]
Davis, M. E.; Lobo, R. F. Chem. Mater. 1992, 4, 756.
[30]
Oleksiak, M. D.; Muraoka, K.; Hsieh, M. F.; Conato, M. T.; Shimojima, A.; Okubo, T.; Chaikittisilp, W.; Rimer, J. D. Angew. Chem. Int. Ed. 2017, 56, 13366.
[31]
Ferdov, S.; Marques, J.; Tavares, C. J.; Lin, Z.; Mori, S.; Tsunoji, N. Microporous Mesoporous Mater. 2022, 336, 111858.
[32]
Cheng, P.; Feng, G.; Sun, C.; Xu, W.; Su, J. H.; Yan, W.; Yu, J. Inorg. Chem. Front. 2018, 5, 2106.
[33]
(a) Snook, M. E.; Hamilton, G. A. J. Am. Chem. Soc. 1974, 96, 860.
[33]
(b) Beitz, T.; Bechmann, W.; Mitzner, R. J. Phys. Chem. A 1998, 102, 6760.
[33]
(c) Anipsitakis, G. P.; Dionysiou, D. D. Environ. Sci. Technol. 2004, 38, 3705.
[34]
(a) Hayon, E.; Treinin, A.; Wilf, J. J. Am. Chem. Soc. 1972, 94, 47.
[34]
(b) Pennington, D. E.; Haim, A. J. Am. Chem. Soc. 1968, 90, 3700.
[35]
Zhou, Y.; Shen, X.; Li, J. Inorg. Chem. Commun. 2019, 107, 107462.
[36]
Gallego, E. M.; Li, C.; Paris, C.; Martín, N.; Martínez‐Triguero, J.; Boronat, M.; Moliner, M.; Corma, A. Chem-Eur. J. 2018, 24, 14631.
[37]
Feng, C.; Su, X.; Wang, W.; Xu, S.; Fan, B.; Xin, Q.; Wu, W. Microporous Mesoporous Mater. 2021, 312, 110780.
[38]
Zhao, X.; Niu, L.; Hao, Z.; Long, X.; Wang, D.; Li, G. React. Kinet. Mech. Cat. 2021, 134, 837.
[39]
Kadja, G. T. M.; Azhari, N. J.; Mardiana, S.; Khalil, M.; Subagjo; Mahyuddin, M. H. Ind. Eng. Chem. Res. 2021, 60, 17786.
[40]
Miao, K.; Luo, X.; Wang, W.; Guo, S.; Cao, F.; Hu, Y.; Chang, P.; Feng, G. Microporous Mesoporous Mater. 2019, 289, 109640.
[41]
(a) Brillas, E.; Sirés, I.; Oturan, M. A. Chem. Rev. 2009, 109, 6570.
[41]
(b) Zhang, M.; Dong, H.; Zhao, L.; Wang, D.; Meng, D. Sci. Total Environ. 2019, 670, 110.
[42]
Guo, Q.; Li, G.; Liu, D.; Wei, Y. Solid State Sci. 2019, 91, 89.
[43]
Han, Z.; Zhang, F.; Zhao, X. Microporous Mesoporous Mater. 2019, 290, 109679.
[44]
Cheng, P.; Song, M.; Zhang, H.; Xuan, Y.; Wu, C. J. Mater. Sci. 2019, 54, 4573.
[45]
(a) Watanabe, T.; Hasegawa, S.; Wakiyama, N.; Usui, F.; Kusai, A.; Isobe, T.; Senna, M. J. Solid State Chem. 2002, 164, 27.
[45]
(b) Zeleňák, V.; Zeleňáková, A.; Ková?, J. Colloids Surf. Physicochem. Eng. Aspects 2010, 357, 97.
[46]
(a) Watanabe, T.; Isobe, T.; Senna, M. J. Solid State Chem. 1996, 122, 291.
[46]
(b) Tavazzi, S.; Ferraro, L.; Cozza, F.; Pastori, V.; Lecchi, M.; Farris, S.; Borghesi, A. ACS Appl. Mater. Interfaces 2014, 6, 19606.
[47]
Majano, G.; Delmotte, L.; Valtchev, V.; Mintova, S. Chem. Mater. 2009, 21, 4184.
[48]
Zhang, H.; Wu, C.; Song, M.; Lu, T.; Wang, W.; Wang, Z.; Yan, W.; Cheng, P.; Zhao, Z. Microporous Mesoporous Mater. 2021, 310, 110633.
[49]
Mihailova, B.; Valtchev, V.; Mintova, S.; Faust, A. C.; Petkov, N.; Bein, T. Phys. Chem. Chem. Phys. 2005, 7, 2756.
[50]
Lu, T.; Wang, Z.; Zhang, H.; Qin, J.; Yang, Y.; Cheng, P.; Zhao, Z. Microporous Mesoporous Mater. 2022, 341, 112071.
[51]
Park, J.; Kim, B. C.; Park, S. S.; Park, H. C. J. Mater. Sci. Lett. 2001, 20, 531.
[52]
Ng, T. Y. S.; Chew, T. L.; Yeong, Y. F.; Jawad, Z. A.; Ho, C. D. Sci. Rep. 2019, 9, 15062.
[53]
Pal, P.; Das, J. K.; Das, N.; Bandyopadhyay, S. Ultrason. Sonochem. 2013, 20, 314.
[54]
Han, J.; Ha, Y.; Guo, M.; Zhao, P.; Liu, Q.; Liu, C.; Song, C.; Ji, N.; Lu, X.; Ma, D.; Li, Z. Ultrason. Sonochem. 2019, 59, 104703.
[55]
Chen, C. T.; Iyoki, K.; Yonezawa, Y.; Okubo, T.; Wakihara, T. J. Phys. Chem. C 2020, 124, 11516.
[56]
Dewes, R. M.; Mendoza, H. R.; Pereira, M. V. L.; Lutz, C.; Van Gerven, T. Ultrason. Sonochem. 2022, 82, 105909.
[57]
Huang, J.; Hu, J.; Du, W.; Liu, H.; Qian, F.; Wang, M. J. Mater. Chem. A 2017, 5, 18801.
[58]
Chen, X.; Qiu, M.; Li, S.; Yang, C.; Shi, L.; Zhou, S.; Yu, G.; Ge, L.; Yu, X.; Liu, Z.; Sun, N.; Zhang, K.; Wang, H.; Wang, M.; Zhong, L.; Sun, Y. Angew. Chem. Int. Ed. 2020, 59, 11325.
[59]
Wang, J.; Liu, P.; Boronat, M.; Ferri, P.; Xu, Z.; Liu, P.; Shen, B.; Wang, Z.; Yu, J. Angew. Chem. Int. Ed. 2020, 59, 17225.
[60]
Chen, J.; Zhang, M.; Shu, J.; Yuan, M.; Yan, W.; Bai, P.; He, L.; Shen, N.; Gong, S.; Zhang, D.; Li, J.; Hu, J.; Li, R.; Wu, G.; Chai, Z.; Yu, J.; Wang, S. Angew. Chem. Int. Ed. 2021, 60, 14858.
[61]
Lu, T.; Yan, W.; Feng, G.; Luo, X.; Hu, Y.; Guo, J.; Yu, Z.; Zhao, Z.; Ding, S. Green Chem. 2022, 24, 4778.
[62]
Liu, Y.; Xue, X.; Wang, Y.; Ye, F.; Dai, J. G.; Chen, G. Green Chem. 2022, 24, 5792.
[63]
De Smedt, C.; Someus, E.; Spanoghe, P. Pest Manage. Sci. 2015, 71, 1355.
[64]
(a) Anfray, C.; Dong, B.; Komaty, S.; Mintova, S.; Valable, S. ACS Appl. Mater. Interfaces 2017, 9, 13849.
[64]
(b) Fenwick, O.; Couti?o- Gonzalez, E.; Grandjean, D.; Baekelant, W.; Richard, F.; Bonacchi, S.; De Vos, D.; Lievens, P.; Roeffaers, M.; Hofkens, J.; Samorì, P. Nat. Mater. 2016, 15, 1017.
Outlines

/