Preparation of Fe@Si/S-34 Catalysts and Its Catalytic Performance for Syngas to Olefins
Received date: 2022-07-23
Online published: 2022-12-21
Supported by
National Natural Science Foundation of China(21908174); National Natural Science Foundation of China(22178283); Natural Science Basic Research Plan in Shaanxi Province of China(2020JM-517); Excellent Youth Science Foundation in Xi'an University of Science and Technology(2021)
The direct synthesis of light olefins from syngas via Fischer-Tropsch synthesis reaction is a promising technology for direct synthesis of olefins from syngas. The key is to improve the selectivity of light olefins through the regulation of product distribution. In this work, the hydrophobic Fe@Si catalyst was prepared by room temperature solid state method- Stöber-silylation method, and then the catalyst was combined with SAPO-34 molecular sieves with different contents to prepare Fe@Si/S-34 composite catalysts. The effects of SAPO-34 molecular sieve content on the physicochemical properties of the catalysts were investigated by X-ray diffraction, scanning electron microscopy, N2 adsorption-desorption, NH3 temperature programmed desorption and water contact angle measurement. The results showed that the content of SAPO-34 molecular sieve has significant influence on the surface area, pore volume, acidity and hydrophobicity of the catalysts. With the increase of SAPO-34 molecular sieve content, the specific surface area and total pore volume of the catalyst increased, the weak acid and medium-strong acid sites increased, and the hydrophobicity weakened. The catalytic performance evaluation results showed that the Fe@Si/S-34 composite catalyst decomposed C5+ hydrocarbons into light hydrocarbons, significantly reduced the selectivity of C5+ products and increased the selectivity of C2~C4 hydrocarbons. Appropriate SAPO-34 molecular sieve could significantly improve the selectivity of C2~C4 olefins. When the mass ratio of Fe@Si catalyst to SAPO-34 is 2, the C2~C4 olefin selectivity of Fe@Si/S-34 catalyst is the highest, the conversion of CO is 80.0%, the selectivity of CO2 in the product is 8.9%, and the selectivity of C2~C4 olefins is 31.1%. In this study, the hydrophobicity of Fe@Si catalyst and the cracking activity of SAPO-34 molecular sieve for C5+ hydrocarbon were coupled together to inhibit the water-gas shift (WGS) reaction, reduce the CO2 selectivity and obtain higher C2~C4 olefin selectivity, which provided a new strategy for the development of catalysts for Fischer-Tropsch synthesis to olefins.
Zhiping Chen , Yongle Meng , Jing Lu , Wenwu Zhou , Zhiyuan Yang , Anning Zhou . Preparation of Fe@Si/S-34 Catalysts and Its Catalytic Performance for Syngas to Olefins[J]. Acta Chimica Sinica, 2023 , 81(1) : 14 -19 . DOI: 10.6023/A22070329
[1] | Zhao, S.; Li, H.; Wang, B.; Yang, X.; Peng, Y.; Du, H.; Zhang, Y.; Han, D.; Li, Z. Fuel 2022, 321, 124124. |
[2] | Qi, Z.; Gao, F.; Zhou, C.; Zeng, Y.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2022, 80, 1100. (in Chinese) |
[2] | ( 齐志豪, 高福杰, 周常楷, 曾誉, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2022, 80, 1100.) |
[3] | Liu, Z.; Ni, Y.; Hu, Z.; Fu, Y.; Fang, X.; Jiang, Q.; Chen, Z.; Zhu, W.; Liu, Z. Chinese J. Catal. 2022, 43, 877. |
[4] | Chen, Z.; Zhang, Z.; Zhou, W.; Yang, Z.; Zhou, A. J. Fuel Chem. Technol. 2022, 50, 1381. (in Chinese) |
[4] | ( 陈治平, 张智, 周文武, 杨志远, 周安宁, 燃料化学学报, 2022, 50, 1381.) |
[5] | Sun, D.; Sun, B.; Pei, Y.; Yan, S.; Fan, K.; Qiao, M.; Zhang, X.; Zong, B. Acta Chim. Sinica 2021, 79, 771. (in Chinese) |
[5] | ( 孙冬, 孙博, 裴燕, 闫世润, 范康年, 乔明华, 张晓昕, 宗保宁, 化学学报, 2021, 79, 771.) |
[6] | Cheng, K.; Kang, J.; King, D.; Subramanian, V.; Zhou, C.; Zhang, Q.; Wang, Y. Adv. Catal. 2017, 60, 125. |
[7] | Li, Y.; Zhang, X.; Wei, M. Chinese J. Catal. 2018, 39, 1329. |
[8] | Hondo, E.; Lu, P.; Zhang, P.; Li, J.; Tsubaki, N. J. Jpn. Petrol. Inst. 2020, 63, 239. |
[9] | Zhai, P.; Li, Y.; Wang, M.; Liu, J.; Cao, Z.; Zhang, J.; Xu, Y.; Liu, X.; Li, Y.; Zhu, Q.; Xiao, D.; Wen, X.; Ma, D. Chem 2021, 7, 3027. |
[10] | Wang, D.; Chen, B.; Duan, X.; Chen, D.; Zhou, X. J. Energy Chem. 2016, 25, 911. |
[11] | Masudi, A.; Jusoh, N.; Muraza, O. Catal. Sci. Technol. 2020, 10, 1582. |
[12] | Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; Miao, S.; Li, J.; Zhu, Y.; Xiao, D.; He, T.; Yang, J.; Qi, F.; Fu, Q.; Bao, X. Science 2016, 351, 1065. |
[13] | Liu, Z. Acta Phys. Chim. Sin. 2016, 32, 803. (in Chinese) |
[13] | ( 刘忠范, 物理化学学报, 2016, 32, 803.) |
[14] | Liu, J.; Song, Y.; Guo, X.; Song, C.; Guo, X. Chinese J. Catal. 2022, 43, 731. |
[15] | Yang, X.; Guo, X.; Zhang, C.; Wang, X.; Yang, Y.; Li, Y. Acta Chim. Sinica 2017, 75, 360. (in Chinese) |
[15] | ( 杨向平, 郭晓雪, 张成华, 王小萍, 杨勇, 李永旺, 化学学报, 2017, 75, 360.) |
[16] | Fellenz, N.; Bengoa, J.; Cagnoli, M.; Marchetti, S. J. Porous Mat. 2017, 24, 1025. |
[17] | Yu, X.; Zhang, J.; Wang, X.; Ma, Q.; Gao, X.; Xia, H.; Lai, X.; Fan, S.; Zhao, T. Appl. Catal. B-Environ. 2018, 232, 420. |
[18] | Xu, Y.; Li, X.; Gao, J.; Wang, J.; Ma, G.; Wen, X.; Yang, Y.; Li, Y.; Ding, M. Science 2021, 371, 610. |
[19] | Karre, A.; Dadyburjor, D. Chem. Eng. Commun. 2022, 209, 967. |
[20] | Cai, Z. M.S. Thesis, Zhejiang university, Hangzhou, 2017. (in Chinese) |
[20] | ( 蔡正才, 硕士论文, 浙江大学, 杭州, 2017.) |
[21] | Qiu, T.; Wang, L.; Lv, S.; Sun, B.; Zhang, Y.; Liu, Z.; Yang, W.; Li, J. Fuel 2017, 203, 811. |
[22] | Di, Z.; Zhao, T.; Feng, X.; Luo, M. Catal. Lett. 2019, 149, 441. |
[23] | Cheng, K.; Gu, B.; Liu, X.; Kang, J.; Zhang, Q.; Wang, Y. Angew. Chem. Int. Ed. 2016, 55, 4725. |
[24] | Liu, X.; Zhou, W.; Yang, Y.; Cheng, K.; Kang, J.; Zhang, L.; Zhang, G.; Min, X.; Zhang, Q.; Wang, Y. Chem. Sci. 2018, 9, 4708. |
[25] | Zhang, S.; Wen, Z.; Yang, L.; Duan, C.; Lu, X.; Song, Y.; Ge, Q.; Fang, Y. Micropor. Mesopor. Mater. 2019, 274, 220. |
[26] | Yang, M.; Tian, P.; Wang, C.; Yuan, Y.; Yang, Y.; Xu, S.; He, Y.; Liu, Z. ChemComm 2014, 50, 1845. |
[27] | Tong, M.; Chizema, L.; Chang, X.; Hondo, E.; Dai, L.; Zeng, Y.; Zeng, C.; Ahmad, H.; Yang, R.; Lu, P. Micropor. Mesopor. Mater. 2021, 320, 111105. |
[28] | Shi, L.; Li, D.; Hou, B.; Sun, Y. Chinese J. Catal. 2007, 28, 999. |
[29] | Vatanpour, V.; Esmaeili, M.; Chahvari, S.; Masteri, M. J. Environ. Chem. Eng. 2021, 9, 105900. |
[30] | Junaidi, M.; Leo, C.; Ahmad, A.; Ahmad, N. Micropor. Mesopor. Mater. 2015, 206, 23. |
[31] | Hou, Y. M.S. Thesis, Shaanxi Normal University, Xi'an, 2020. (in Chinese) |
[31] | ( 候屹峰, 硕士论文, 陕西师范大学, 西安, 2020.) |
[32] | Wang, H. Ph.D. Dissertation, Tianjin university, Tianjin, 2019. (in Chinese) |
[32] | ( 王洪宇, 博士论文, 天津大学, 天津, 2019.) |
[33] | Tong, A.; Dan, D.; Yi, C. Chem. Res. Chin. Univ. 2017, 33, 672. |
[34] | Li, J.; Pan, X.; Bao, X. Chinese J. Catal. 2015, 36, 1131. |
[35] | Tan, L.; Wang, F.; Zhang, P.; Suzuki, Y.; Wu, Y.; Chen, J.; Yang, G.; Tsubaki, N. Chem. Sci. 2020, 11, 4097. |
/
〈 |
|
〉 |