Progress in Rare-earth Metal Complexes with Different Ligands in Olefin Polymerization
Received date: 2023-01-08
Online published: 2023-02-02
Catalysts play a pivotal role in promoting the development of polyolefin industry, especially, the design and synthesis of metal-catalysts is the key to the metal-organic chemistry. Surprisingly, rare-earth metal harness the unique orbital structure, reactivity and coordination criteria, so rare-earth metal complexes have been one of the efficient catalysts and show the special advantages in the preparation of polyolefin materials by introducing steric hindrance around the metal center, notably, their structure, chemical activity and stability are determined by ligands. The development of rare-earth metal catalysts with cyclopentadienyl ligands (alkyl-substituted, aryl-substituted, indenyl and fluorenyl ligands) and non-cyclopentadienyl ligands (macrocyclic tetradentate, tridentate, didentate, mondentate ligands), and their applications in the preparation of polyolefins are described in this review. This work aims to promote the research of rare-earth metal catalysts in the field of polyolefin synthesis and metal-organic catalysis, as well provide new design ideas and research methods for the synthesis of high-quality and functionalized polyolefin catalysts.
Yang Wang , Jingling Yan . Progress in Rare-earth Metal Complexes with Different Ligands in Olefin Polymerization[J]. Acta Chimica Sinica, 2023 , 81(3) : 275 -288 . DOI: 10.6023/A23010004
[1] | Wilkinson G.; Birminham J. M. J. Am. Chem. Soc. 1954, 76, 6210. |
[2] | Evans W. J.; Ulibarri T. A.; Ziller J. W. J. Am. Chem. Soc. 1990, 112, 219. |
[3] | Evans W. J.; Gonzales S. L.; Ziller J. W. J. Am. Chem. Soc. 1991, 113, 7423. |
[4] | Hultzsch K. C.; Spaniol H. P.; Okuda J. Angew. Chem. Int. Ed. 1999, 38, 227. |
[5] | Luo Y.; Baldamus J.; Hou Z. J. Am. Chem. Soc. 2004, 126, 13910. |
[6] | Wang H.; Wu X.; Yang Y.; Nishiura M.; Hou Z. Angew. Chem. Int. Ed. 2020, 59, 7173. |
[7] | Shapiro P. J.; Schaefer W. P.; Labimger J. A.; Bercaw J. E.; Cotter W. D. J. Am. Chem. Soc. 1994, 116, 4623. |
[8] | Arndt S.; Okuda J. Chem. Rev. 2002, 102, 1953. |
[9] | Zhang L.; Luo Y.; Hou Z. J. Am. Chem. Soc. 2005, 127, 14562. |
[10] | Huang L.; Liu Z.; Zhang Y.; Wu C.; Cui D. ACS Catal. 2022, 12, 953. |
[11] | Chen R.; Yao C.; Wang M.; Xie H.; Wu C.; Cui D. Organometallics 2015, 34, 455. |
[12] | Liu Z.; Liu B.; Zhao Z.; Cui D. Macromolecules 2021, 54, 3181. |
[13] | Wang T.; Wu C.; Cui D. Macromolecules 2020, 53, 6380. |
[14] | Peng D.; Du G.; Zhang P.; Yao B.; Li X.; Zhang S. Macromol. Rapid Commun. 2016, 37, 987. |
[15] | Chen J.; Gao Y.; Wang B.; Lohr T. L.; Marks T. J. Angew. Chem. Int. Ed. 2017, 56, 15964. |
[16] | Desurmont G.; Tanaka M.; Li Y.; Yasuda H.; Tokimitsu T.; Tone S.; Yanagase A. J. Polym. Sci. Pol. Chem. 2000, 38, 4095. |
[17] | Wang Y.; Zhou C.; Cheng J. Macromolecules 2020, 53, 3332. |
[18] | Forsyth C. M.; Deacon G. B.; Field L. D.; Jones C.; Junk P. C.; Kay D. L.; Masters A. F.; Richards A. F. Chem. Commun. 2006, 9, 1003. |
[19] | Kelly R. P.; Bell T. D. M.; Cox R. P.; Daniels D. P.; Deacon G. B.; Jaroschik F.; Junk P. C.; Le Goff X. F.; Lemercier G.; Martinez A.; Wang J.; Werner D. Organometallics 2015, 34, 5624. |
[20] | Deacon G. B.; Jaroschik F.; Junk P. C.; Kelly R. P. Chem. Commun. 2014, 50, 10655. |
[21] | Ruspic C.; Moss J. R.; Schuermann M.; Harder S. Angew. Chem. Int. Ed. 2008, 47, 2121. |
[22] | Wang Y.; Cheng J. New J. Chem. 2020, 44, 17333. |
[23] | Wang Y.; Rosal I. D.; Qin G.; Zhao L.; Maron L.; Shi X.; Cheng J. Chem. Commun. 2021, 57, 7766. |
[24] | Tardif O.; Kaita S. Dalton Trans. 2008, 19, 2531. |
[25] | Rodrigues A.; Kirillov E.; Roisnel T.; Razavi A.; Vuillemin B.; Carpentier J. Angew. Chem. Int. Ed. 2007, 46, 7240. |
[26] | Jiang Y.; Zhang Z.; Li S.; Cui D. Angew. Chem. Int. Ed. 2022, 61, e202112966. |
[27] | Wang B.; Wang D.; Cui D.; Gao W.; Tang T.; Chen X.; Jing X. Organometallics 2007, 26, 3167. |
[28] | Pan Y.; Rong W.; Jian Z.; Cui D. Macromolecules 2012, 45, 1248. |
[29] | Xu X.; Chen Y.; Sun J. Chem. Eur. J. 2009, 15, 846. |
[30] | Xu X.; Chen Y.; Feng J.; Zou G.; Sun J. Organometallics 2010, 29, 549. |
[31] | Tan R.; Mu X.; Wang H.; Li Y. Polymer 2021, 230, 124085. |
[32] | Kirillov E.; Lehmann C. W.; Razavi A.; Carpentier J. J. Am. Chem. Soc. 2004, 126, 12240. |
[33] | Rodrigues A.; Kirillov E.; Lehmann C. W.; Roisnel T.; Vuillemin B.; Razavi A.; Carpentier J. Chem. Eur. J. 2007, 13, 5548. |
[34] | Rodrigues A.; Kirillov E.; Vuillemin B.; Razavi A.; Carpentier J. Polymer 2008, 49, 2039. |
[35] | Thuilliez J.; Monteil V.; Spitz R.; Boisson C. Angew. Chem. Int. Ed. 2005, 44, 2593. |
[36] | Thuilliez J.; Spitz R.; Boisson C. Macromol. Chem. Phys. 2006, 207, 1727. |
[37] | Thuilliez J.; Ricard L.; Nief F.; Boisson F.; Boisson C. Macromolecules 2009, 42, 3774. |
[38] | Li S.; Liu D.; Wang Z.; Cui D. ACS Catal. 2018, 8, 6086. |
[39] | Lin F.; Wang X.; Pan Y.; Wang M.; Liu B.; Luo Y.; Cui D. ACS Catal. 2015, 6, 176. |
[40] | Liu B.; Qiao K.; Fang J.; Wang T.; Wang Z.; Liu D.; Xie Z.; Maron L.; Cui D. Angew. Chem. Int. Ed. 2018, 57, 14896. |
[41] | Zhong Y.; Wu Y.; Cui D. Macromolecules 2021, 54, 1754. |
[42] | Li X.; Wang X.; Tong X.; Zhang H.; Chen Y.; Liu Y.; Liu H.; Wang X.; Nishiura M.; He H.; Lin Z. G.; Zhang S. W.; Hou Z. Organometallics 2013, 32, 1445. |
[43] | Zhang Z.; Kang X.; Jiang Y.; Cai Z.; Li S.; Cui D. Angew. Chem. Int. Ed. 2023, e202215582. |
[44] | Ohashi M.; Konkol M.; Del Rosal I.; Poteau R.; Maron L.; Okuda J. J. Am. Chem. Soc. 2008, 130, 6920. |
[45] | Bambirra S.; van Leusen D.; Meetsma A.; Hessen B.; Teuben J. H. Chem. Commun. 2001, 7, 637. |
[46] | Bambirra S.; Meetsma A.; Hessen B.; Bruins A. P. Organometallics 2006, 25, 3486. |
[47] | Bambirra S.; van Leusen D.; Tazelaar C. G. J.; Meetsma A.; Hessen B. Organometallics 2007, 26, 1014. |
[48] | Tazelaar C. G. J.; Bambirra S.; van Leusen D.; Meetsma A.; Hessen B.; Teuben J. H. Organometallics 2004, 23, 936. |
[49] | Ma H. Y.; Spaniol T. P.; Okuda J. Dalton Trans. 2003, 24, 4770. |
[50] | Long D. P.; Bianconi P. A. J. Am. Chem. Soc. 1996, 118, 12453. |
[51] | Yi W.; Zhang J.; Zhang F.; Zhang Y.; Chen Z.; Zhou X. Chem. Eur. J. 2013, 19, 11975. |
[52] | Cheng J.; Saliu K.; Kiel G. Y.; Ferguson M. J.; McDonald R.; Takats J. Angew. Chem. Int. Ed. 2008, 47, 4910. |
[53] | Estler F.; Eickerling G.; Herdtweck E.; Anwander R. Organometallics 2003, 22, 1212. |
[54] | Zimmermann M.; To?rnroos K. W.; Waymouth R. M.; Anwander R. Organometallics 2008, 27, 4310. |
[55] | Zhang L.; Suzuki T.; Luo Y.; Nishiura M.; Hou Z. Angew. Chem. Int. Ed. 2007, 119, 1941. |
[56] | Chen H.-X.; Li B.-X.; Yao Y.-M.; Liu P. Chin. J. Appl. Chem. 2022, 39, 843. (in Chinese) |
[56] | (陈洪霞, 李宝霞, 姚英明, 刘朋, 应用化学, 2022, 39, 843.) |
[57] | Lv K.; Cui D. Organometallics 2008, 27, 5438. |
[58] | Hajela S.; Schaefer W. P.; Bercaw J. E. J. Organomet. Chem. 1997, 532, 45. |
[59] | Lawrence S. C.; Ward B. D.; Dubberley S. R.; Kozak C. M.; Mountford P. Chem. Commun. 2003, 23, 2880. |
[60] | Tredget C. S.; Bonnet F.; Cowley A. R.; Mountford P. Chem. Commun. 2005, 26, 3301. |
[61] | Wedler M.; Noltemeyer M.; Pieper U.; Schmidt H. G.; Stalke D.; Edelmann F. T. Angew. Chem. Int. Ed. 1990, 29, 894. |
[62] | Welder M.; Recknagel A.; Gilje J. W.; Nottemeyer M.; Edelmann F. T. J. Organomet. Chem. 1992, 426, 295. |
[63] | Bambirra S.; Brandsma M.; Brussee E.; Meetsma A.; Hessen B.; Teuben J. H. Organometallics 2000, 19, 3197. |
[64] | Bambirra S.; van Leusen D.; Meetsma A.; Hessen B.; Teuben J. H. Chem. Commun. 2003, 4, 522. |
[65] | Bambirra S.; Bouwkamp M. W.; Meetsma A.; Hessen B. J. Am. Chem. Soc. 2004, 126, 9182. |
[66] | Zhang L.; Nishiura M.; Yuki M.; Luo Y.; Hou Z. Angew. Chem. Int. Ed. 2008, 47, 2642. |
[67] | Li S.; Miao W.; Tang T.; Dong W.; Zhang X.; Cui D. Organometallics 2008, 27, 718. |
[68] | Li S.; Cui D.; Li D.; Hou Z. Organometallics 2009, 28, 4814. |
[69] | Liu B.; Li L.; Sun G.; Liu J.; Wang M.; Li S.; Cui D. Macromolecules 2014, 47, 4971. |
[70] | Spannenberg A.; Arndt P.; Kempe R. Angew. Chem. Int. Ed. 1998, 37, 832. |
[71] | Qayyum S.; Haberland K.; Forsyth C. M.; Junk P. C.; Deacon G. B.; Kempe R. Eur. J. Inorg. Chem. 2008, 2008, 557. |
[72] | Lee L. W. M.; Piers W. E.; Elsegood M. R. J.; Clegg W.; Parvez M. Organometallics 1999, 18, 2947. |
[73] | Hayes P. G.; Piers W. E.; Parvez M. J. Am. Chem. Soc. 2003, 125, 5622. |
[74] | Hayes P. G.; Piers W. E.; McDonald R. J. Am. Chem. Soc. 2002, 124, 2132. |
[75] | Hayes P. G.; Piers W. E.; Lee L. W. M.; Knight L. K.; Parvez M.; Elsegood M. R. J.; Clegg W. Organometallics 2001, 20, 2533. |
[76] | Li D.; Li S.; Cui D.; Zhang X. Organometallics 2010, 29, 2186. |
[77] | Huang J.; Yao C.; Li S.; Cui D. Chinese J. Polym. Sci. 2021, 39, 309. |
[78] | Evans W. J.; Broomhall D. R.; Ziller J. W. Organometallics 1996, 15, 1351. |
[79] | Butovskii M. V.; Tok O. L.; Bezugly V.; Wagner F. R.; Kempe R. Angew. Chem. Int. Ed. 2011, 50, 7695. |
[80] | Luo Y.; Nishiura M.; Hou Z. J. Organomet. Chem. 2007, 692, 536. |
[81] | Wang C.; Chen J.; Xu W.; Mou Z.; Yao Y.; Luo Y. Inorg. Chem. 2020, 59, 3132. |
/
〈 |
|
〉 |