Review

Electrocatalytic Degradation of Wastewater by Polymer-based Carbon Nanomembranes and Mechanism

  • Huiying Zhang ,
  • Shuyan Yu ,
  • Congju Li
Expand
  • a School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
    b Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
    c Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China

Received date: 2023-01-01

  Online published: 2023-03-24

Supported by

National Natural Science Foundation of China(52103070); Fundamental Research Funds for the Central Universities(FRF-TP-20-057A1); Fundamental Research Funds for the Central Universities(06500100); “Ten thousand plan”-National High-level personnel of special support program

Abstract

Advanced electrocatalytic oxidation technology generally uses plate electrodes, because the hindered mass transfer has disadvantages of incomplete degradation, which limits the application of electrocatalytic degradation of pollutants. As a new type of electrode, porous carbon nanomembranes can effectively improve the mass transfer efficiency, thereby overcoming the shortcomings of traditional technology, it have been widely used in recent years. In this paper, the methods for preparing carbon films are reviewed, including electrospinning technology (EST), chemical vapor deposition (CVD) and template method, the principles and operating methods of the different techniques are introduced separately, and examples of the practical application of each method are given. Among them, electrospinning technology has the advantages of facilitating the modification of carbon films and the preparation of oriented carbon membranes. Secondly, the research on the electrocatalytic degradation of wastewater containing antibiotics, dye molecules and other organic compounds by carbon membrane is summarized, the universality of electrocatalysis is illustrated from the effective degradation results of carbon membranes for different organic compounds, the high efficiency, cleanliness and reproducibility of carbon membranes as electrodes for electrocatalytic degradation of wastewater are further demonstrated by different studies. These studies have further improved the performance of carbon membrane as electrodes by adding metals, metal oxides and metal-organic frameworks to the carbon membranes. Finally, the mechanism of electrochemical advanced oxidation, effect of electrode and main detection methods of free radicals are described, the mechanism of electrochemical advanced oxidation is introduced in terms of direct and indirect oxidation, and specific demonstration is made through equations, the possible electrode effects and their influence on electrocatalytic degradation of wastewater are cited as example. The methods of detecting free radicals are mainly introduced as quenching method and probe method, the principles and controversies are explained, and the development of carbon film electrocatalytic degradation of wastewater is prospected.

Cite this article

Huiying Zhang , Shuyan Yu , Congju Li . Electrocatalytic Degradation of Wastewater by Polymer-based Carbon Nanomembranes and Mechanism[J]. Acta Chimica Sinica, 2023 , 81(4) : 420 -430 . DOI: 10.6023/A23010001

References

[1]
Qaseem, S.; Dlaminiabe, D. S.; Zikalala, S. A.; Teshaab, J. M.; Husainc, M. D.; Wang, C. H.; Jiang, Y. M.; Wei, X.; Vilakatig, J. D.; Li, J. X. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125270.
[2]
Tan, Y. X.; Wen, Q. X.; Li, M.; Yang, B. X.; Tang, Y. C.; Li, A.; Chen, Z. Q. Sep. Purif. Technol. 2022, 303, 122227.
[3]
Xu, L.; Sun, Y. K.; Du, L. S.; Zhang, J. J. Desalination 2014, 352, 58.
[4]
Qi, Y. F.; Zhou, X. Y.; Li, Z. J.; Yin, R. L.; Qin, J. H.; Li, H. S.; Guo, W. Q.; Li, A. J.; Qiu, R. L. Catalysts 2022, 12, 1327.
[5]
Kimura, K.; Yamakawa, M.; Hafuka, A. Chemosphere 2021, 277, 130244.
[6]
Ma, X.-Y.; Sun, Z.-R. Modern Chemical Industry 2018, 38, 42. (in Chinese)
[6]
(麻晓越, 孙治荣, 现代化工, 2018, 38, 42.)
[7]
Zhou, Y.-J.; Ji, Q.-H.; Hu, Z.-C.; Qu, J.-H. Journal of Civil and Environmental Engineering 2022, 44, 104. (in Chinese)
[7]
(周雨珺, 吉庆华, 胡承志, 曲久辉, 土木与环境工程学报, 2022, 44, 104.)
[8]
Li, Y. L.; Jia, B. M.; Fan, Y. Z.; Zhu, K. L.; Li, G. Q.; Su, C. Y. Adv. Energy. Mater. 2018, 8, 1702048.
[9]
Barbari, K.; Delimi, R.; Benredjem, Z.; Saaidia, S, ; Djemel, A.; Chouchane, T.; Oturan, N.; Oturan, M. A. Chemosphere 2018, 203, 1.
[10]
Zhu, J. H.; Zhang, Q.; Zhao, Y. J.; Zhang, R. Y.; Liu, L. F.; Yu, J. Y. Carbon 2022, 202, 13.
[11]
Xie, W. H.; Shi, Y. L.; Wang, Y. X.; Zheng, Y. L.; Liu, H.; Hu, Q.; Wei, S. Y.; Gu, H. B.; Guo, Z. H. Chem. Eng. J. 2020, 405, 126585.
[12]
Chen, Y. Y.; Li, F. L.; Dong, X. C.; Guo, D.; Huang, Y. X.; Li, S. P. J. Alloys Compd. 2021, 869, 159258.
[13]
Huang, G.; Chen, Y.-Z.; Jiang, H.-L. Acta Chim. Sinica 2016, 74, 113. (in Chinese)
[13]
(黄刚, 陈玉贞, 江海龙. 化学学报, 2016, 74, 113.)
[14]
Hu, F.-P.; Zhu, J.-H.; Zhan, P.; Wang, X.-Y.; Long, L.-L.; Xu, L.; Xu, G.-P. Modern Chemical Industry. 2021, 41, 19. (in Chinese)
[14]
(胡锋平, 朱建华, 占鹏, 王晓英, 龙兰兰, 许莉, 许高平, 现代化工, 2021, 41, 19.)
[15]
Yadava, D.; Aminib, M.; Ehrmann, A. Eur. Polym. J. 2020, 138, 109963.
[16]
Anton, F. US 1975504A, 1934.
[17]
Qin, L. J. Mater. Sci. Lett. 1997, 16, 457.
[18]
Feng, L.; Yang, Z. L.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Ma, Y. M.; Yang, Z. Z.; Jiang, L.; Zhu, D. B. Angew. Chem. Int. Ed. 2003, 42, 4217.
[19]
Maldonado, S.; Stevenson, K. J. J. Phys. Chem. B 2005, 109, 4707.
[20]
Dou, S.; Li, X.; Tao, L.; Huo, J.; Wang, S. Chem. Commun. 2016, 52, 9727.
[21]
Ding, Q.; Liu, M.; Miao, Y.; Huang, Y.; Liu, T. Electrochim. Acta 2015, 159, 1.
[22]
Wang, Y.; Zhao, M.; Hou, C.; Chen, W.; Li, S.; Ren, R.; Li, Z. Chem. Eng. J. 2021, 414, 128940.
[23]
Li, K.-H.; Cai, J.-W.; Zhang, Z.-H.; Tao, J.-T.; Wu, J.-L.; Zeng, S.-Y.-Y.; Wu, S.-P. J. Funct. Mater. 2021, 52, 8. (in Chinese)
[23]
(李亢悔, 蔡佳伟, 张自航, 陶江涛, 吴加龙, 曾诗喻瑶, 吴述平, 功能材料, 2021, 52, 8.)
[24]
Xue, C.; Hu, Y.-Y.; Huang, Z.-M. Polym. Bull. 2009, 6, 10. (in Chinese)
[24]
(薛聪, 胡影影, 黄争鸣, 高分子通报, 2009, 6, 10.)
[25]
Li, Q.; Li, X.-X.; Xie, F.-F.; Zhou, W.-L.; Chen, K.-Y.; Liu, Y.-Q. J. Text. Res. 2022, 43, 178. (in Chinese)
[25]
(李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清, 纺织学报, 2022, 43, 178.)
[26]
Wei, X.-Y.; Zhang, W.-J.; Chen, L.-W.; Liu, C.-Z.; Lin, Q.-F.; Jiang, Y.-M.; Wang, X.-J. Mater. Rev. 2022, 36, 51. (in Chinese)
[26]
(卫新宇, 张文瑾, 陈龙威, 刘成周, 林启富, 江贻满, 王晓洁, 材料导报, 2022, 36, 51.)
[27]
Chen, H.; Ren, L.-L.; He, J.-Y.; Yao, Y.-X.; Ma, X. Modern Chemical Industry. 2022, 42, 82. (in Chinese)
[27]
(陈慧, 任玲玲, 贺建芸, 姚雅萱, 马旭, 现代化工, 2022, 42, 82.)
[28]
Song, Y.-L.; Zhao, F.; Li, Z.-Z.; Huang, H.-J. Bull. Chin. Ceram. Soc. 2021, 40, 2770. (in Chinese)
[28]
(宋一龙, 赵芳, 李志尊, 黄红军, 硅酸盐通报, 2021, 40, 2770.)
[29]
Huang, Z.-B.; Gao, D.-S.; Li, Z.-H.; Lei, G.-T.; Zhou, J. Acta Chim. Sinica 2007, 65, 1007. (in Chinese)
[29]
(黄再波, 高德淑, 李朝晖, 雷钢铁, 周姬, 化学学报, 2007, 65, 1007.)
[30]
Liu, Y. Ph.D. Dissertation, Donghua University, Shanghai, 2008. (in Chinese)
[30]
(刘雍, 博士论文, 东华大学, 上海, 2008.)
[31]
Hu, P.-R.; Wang, H.-Z.; Li, Y.-G.; Zhang, Q.-H. Bull. Chin. Ceram. Soc. 2012, 31, 6. (in Chinese)
[31]
(胡沛然, 王宏志, 李耀刚, 张青红, 硅酸盐通报, 2012, 31, 6.)
[32]
Shi, C.-D.; Yu, S.-Y.; Li, C.-J. Fine Chemicals 2020, 37, 9. (in Chinese)
[32]
(施成东, 于淑艳, 李从举, 精细化工, 2020, 37, 9.)
[33]
Sultanov, F.; Daulbayev, C.; Bakbolat, B.; Daulbayev, O.; Bigaj, M.; Mansurov, Z.; Kuterbekov, K.; Bekmyrza, K. Chem. Phys. Lett. 2019, 737, 136821.
[34]
Qiao, H.; Yang, X.; Wei, J.-Z. Technology & Market. 2010, 6, 13. (in Chinese)
[34]
(乔辉, 杨笑, 魏金柱, 技术与市场, 2010, 6, 13.)
[35]
Geus, J. W.; Van Dillen, A. J.; Hoogenraad, M. S. MRS Online Proceedings Library 1994, 368, 87.
[36]
Xiao, J.-L. M.S. Thesis, Chongqing University, Chongqing, 2002. (in Chinese)
[36]
(肖金龙, 硕士论文, 重庆大学, 重庆, 2002.)
[37]
Maphutha, S.; Moothi, K.; Meyyappan, M.; Lyuke, S. E. Sci. Rep. 2013, 3, 1509.
[38]
Chen, Z.-X.; Zheng, B.-Y.; Li, X.-X.; Fu, M.-L.; Xie, S.-G.; Deng, C.; Hu, Y.-H. Chem. Ind. Eng. Prog. 2010, 29, 94. (in Chinese)
[38]
(陈彰旭, 郑炳云, 李先学, 傅明连, 谢署光, 邓超, 胡衍华, 化工进展, 2010, 29, 94.)
[39]
Wu, X.-H.; Hong, X.-T.; Nan, J.-M.; Li, L.-S.; Chen, H.-Y. Mater. Rev. 2012, 26, 61. (in Chinese)
[39]
(吴小辉, 洪孝挺, 南俊民, 李来胜, 陈红雨, 材料导报, 2012, 26, 61.)
[40]
Ma, M.-J.; Zhang, A.-Y. J. Henan Polytech. Univ., Nat. Sci. 2008, 27, 696. (in Chinese)
[40]
(马名杰, 张爱芸, 河南理工大学学报: 自然科学版, 2008, 27, 696.)
[41]
Cai, B.; Hu, Y.; Du, B.-J.; Li, J.-J. Mater. Rev. 2010, 24, 107. (in Chinese)
[41]
(蔡彬, 胡炜, 杜宝吉, 李健江, 材料导报, 2010, 24, 107.)
[42]
Feng, L.; Li, S. H.; Li, H. J.; Zhai, J.; Song, Y. L.; Jiang, L.; Zhu, D. B. Angew. Chem. Int. Ed. 2002, 41, 1221.
[43]
Gao, L.-H.; Shi, Y.-L.; Li, W.-H.; Liu, J.-M.; Cai, Y.-Q. Environ. Chem. 2013, 32, 15. (in Chinese)
[43]
(高立红, 史亚利, 厉文辉, 刘杰民, 蔡亚岐, 环境化学, 2013, 32, 15.)
[44]
Man, S. S.; Ge, X. T.; Xu, K.; Yang, H. F.; Bao, H. B.; Sun, Q.; He, M.; Xie, Y. T.; Li, A. Q.; Mo, Z. H.; Yang, W. J.; Li, X. Sep. Purif. Technol. 2022, 280, 119816.
[45]
Shi, C. D.; Yu, S. Y.; Wang, L.; Zhang, X. L.; Lin, X. Q.; Li, C. J. Journal of Environmental Chemical Engineering. 2021, 9, 106540.
[46]
Yu, S.; Gao, Y.; Kjan, R.; Liang, P.; Zhang, X.; Huang, X. J. Membr. Sci. 2020, 614, 118368.
[47]
Zhang, L.-S.; Jiang, L.-L. Environ. Prot. Chem. Ind. 2000, 20, 5. (in Chinese)
[47]
(张林生, 蒋岚岚, 化工环保, 2000, 20, 5.)
[48]
Sun, Y. Y.; Wang, G.; Dong, Q.; Qian, B. Q.; Meng, Y. L.; Qiu, J. S. Chem. Eng. J. 2014, 253, 73.
[49]
Liu, D. M.; Jin, C. C.; Shan, F. K.; He, J. J.; Wang, F. ACS Appl. Mater. Interfaces 2020, 9, 17443.
[50]
Pei, S.-Z.; Zhu, L.; Zhang, Z.-M. Teng, J.; Liu, X.-F.; You, S.-J. Acta Sci. Circumstantiae 2020, 40, 3658. (in Chinese)
[50]
(裴姝钊, 朱琳, 张梓萌, 滕洁, 刘雪峰, 尤世界, 环境科学学报, 2020, 40, 3658.)
[51]
Xiang, Q.; Xie, S.-Y.; Zhang, J.-L.; Yu, L.-J.; Shen, H.-Y.; Hu, M.-Q.; Dong, X.-Y. Ind. Water Treat. 2017, 37, 5. (in Chinese)
[51]
(项奇, 谢晟瑜, 张佳丽, 俞林佳, 沈昊宇, 胡美琴, 董新艳, 工业水处理, 2017, 37, 5.)
[52]
Vieno, N.; Sillanp??, M. Environ. Int. 2014, 69, 28.
[53]
Zhou, X. Y.; Guo, J.; Zhang, W.; Zhou, P.; Deng, J. J.; Lin, K. F. J. Hazard. Mater. 2014, 273, 27.
[54]
Naidoo, V.; Swan, G. E. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 149, 269.
[55]
Kojima, S.; Bohner, A.; Von Wirén, N. J. Membr. Biol. 2006, 212, 83.
[56]
Qu, C.; Ren, N.; Zhang, S. J.; Li, Y. G.; Meng, S. J.; Li, X. H.; Wang, S. S.; Liang, D. W.; Li, A. R. Chemosphere 2021, 272, 129453.
[57]
Kumar, A.; Omar, R. A.; Verma, N. Chemosphere 2020, 248, 126030.
[58]
Alajami, M.; Yassin, M. A.; Ghouri, Z. K.; Al-Meer, S.; Barakat, N. A. M. Int. J. Hydrogen. Energy. 2018, 43, 5561.
[59]
Martinez-Huitle, C. A.; Ferro, S. Chem. Soc. Rev. 2006, 35, 1324.
[60]
Feng, Y.-J.; Cui, Y.-H.; Sun, L.-X.; Liu, J.-F.; Cai, W.-M. Journal of Harbin Institute of Technology 2004, 36, 450. (in Chinese)
[60]
(冯玉杰, 崔玉虹, 孙丽欣, 刘峻峰, 蔡伟民, 哈尔滨工业大学学报, 2004, 36, 450.)
[61]
Comninellis, C. Electrochim. Acta 1994, 39, 1857.
[62]
Singh, S.; Lo, S. L.; Srivastava, V. C.; Hiwarkar, A. D. J. Environ. Chem. Eng. 2016, 4, 2911.
[63]
Shi, C. D.; Yu, S. Y.; Li, C. J. Chem. Eng. J. 2022, 441, 136052.
[64]
Chen, Y.; Hong, L.; Xue, H. M.; Han, W. Q.; Wang, L. J.; Sun, X. Y.; Li, J. S. J. Electroanal. Chem. 2010, 648, 119.
[65]
Pei, S.; Shen, C.; Zhang, C.; Ren, N.; You, S. Environ. Sci. Technol. 2019, 53, 4406.
[66]
Pei, S. Z.; Teng, J.; Ren, N. Q.; You, S. J. Environ. Sci. Technol. 2020, 54, 4573.
[67]
Pei, S. Z.; You, S, J.; Zhang, J. N. ACS. EST. Eng. 2021, 1, 1502.
[68]
Guo, Y.; Long, J. F.; Huang, J.; Yu, G.; Wang, Y. J. Water Res. 2022, 215, 118275.
[69]
Lu, C.-L.; Chang, H.; Sun, F.-H. J. Environ. Eng. Technol. 2022, 12, 70. (in Chinese)
[69]
(卢成龙, 常红, 孙福红, 环境工程技术学报, 2022, 12, 70.)
[70]
Liu, Z. M.; Zhu, M. F.; Zhao, L.; Deng, C.; Ma, J.; Wang, Z.; Liu, H. B.; Wang, H. Chem. Eng. J. 2017, 314, 59.
[71]
Lv, F. J.; Zhao, X. Y.; Pan, S. L.; Cao, W. X.; Zuo, X. J.; Li, Y. J. Water Process Eng. 2022, 48, 102883.
[72]
Gao, L. W.; Guo, Y.; Huang, J.; Wang, B.; Deng, S. B.; Yu, G.; Wang, Y. J. Chem. Eng. J. 2022, 441, 135970.
Outlines

/