Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (4): 420-430.DOI: 10.6023/A23010001 Previous Articles
Review
张慧颖a,b,c, 于淑艳a,b,c,*(), 李从举a,b,c,*()
投稿日期:
2023-01-01
发布日期:
2023-03-23
作者简介:
张慧颖, 于2022年获得青岛科技大学学士学位, 2022年至今在于淑艳老师的指导下攻读硕士学位. 研究兴趣是探究静电纺丝电催化高效碳纤维微滤膜研制及其降解废水性能. |
于淑艳讲师, 硕士生导师. 于2013获得山东大学双学士学位, 2018年获得新加坡南洋理工大学博士学位, 2020年获得清华大学博士后, 现为北京科技大学讲师. 研究兴趣是探究静电纺丝电催化高效碳纤维微滤膜研制及其降解废水性能. |
李从举教授, 博士生导师. 于2004年获得中国科学院化学研究所博士学位, 现任北京科技大学教授. 2017年获得国家“万人计划”科技创新领军人才称号. 研究重点是环境纳米材料与技术. |
基金资助:
Huiying Zhanga,b,c, Shuyan Yua,b,c,*(), Congju Lia,b,c,*()
Received:
2023-01-01
Published:
2023-03-23
Contact:
* E-mail: Supported by:
Share
Huiying Zhang, Shuyan Yu, Congju Li. Electrocatalytic Degradation of Wastewater by Polymer-based Carbon Nanomembranes and Mechanism[J]. Acta Chimica Sinica, 2023, 81(4): 420-430.
制备方法 | 优势 | 挑战 |
---|---|---|
EST | 可以制备取向性的碳纳米纤维; 生产出的纳米纤维直径小, 利于反应进行; 设备成本低; 制备出的纳米纤维表面光滑且粗细均匀 | 对其进行改性时需要考虑到纳米纤维的直径限制; 反应时溶剂需要进一步处理; 纺丝过程受到纺丝液、电压、接收距离等的影响 |
CVD | 生长条件可控; 制备出的碳纳米纤维强度高; 沉积速率高; 制备出的材料纯度高 | 反应后的余气中可能含有有毒物质; 设备成本高 |
模板法 | 制备方法简单 | 碳纳米纤维直径大; 密度低 |
制备方法 | 优势 | 挑战 |
---|---|---|
EST | 可以制备取向性的碳纳米纤维; 生产出的纳米纤维直径小, 利于反应进行; 设备成本低; 制备出的纳米纤维表面光滑且粗细均匀 | 对其进行改性时需要考虑到纳米纤维的直径限制; 反应时溶剂需要进一步处理; 纺丝过程受到纺丝液、电压、接收距离等的影响 |
CVD | 生长条件可控; 制备出的碳纳米纤维强度高; 沉积速率高; 制备出的材料纯度高 | 反应后的余气中可能含有有毒物质; 设备成本高 |
模板法 | 制备方法简单 | 碳纳米纤维直径大; 密度低 |
电极 | 有机物 | 初始浓度 | 降解效果 | 文献 |
---|---|---|---|---|
Fe/Co-CNFs | TC | 30 mg/L | 12 h去除率100.0% | [ |
ACFs | TC/OTC | 40 mg/L | 2 h去除率80% | [ |
rGO@Ti/SnO2-Sb | NOR | 100 mg/L | 1.5 h去除率96.3% | [ |
G/SnO2/CFs | SMX | 15 mg/L | 8 h去除率85% | [ |
e-CNT/ACF | MO | 25 mg/L | 1 h去除率90% | [ |
BTO NFs | RhB | 7.5 mg/L | 75 min去除率99% | [ |
TiO2/CM | MB | 200 mg/L | 12 h去除率99.9% | [ |
CNTs-C/PTFE | TCS | 50 mg/L | 1 h去除率98% | [ |
Cu-rGO-PC | DCF | 20 mg/L | 1 h去除率100% | [ |
电极 | 有机物 | 初始浓度 | 降解效果 | 文献 |
---|---|---|---|---|
Fe/Co-CNFs | TC | 30 mg/L | 12 h去除率100.0% | [ |
ACFs | TC/OTC | 40 mg/L | 2 h去除率80% | [ |
rGO@Ti/SnO2-Sb | NOR | 100 mg/L | 1.5 h去除率96.3% | [ |
G/SnO2/CFs | SMX | 15 mg/L | 8 h去除率85% | [ |
e-CNT/ACF | MO | 25 mg/L | 1 h去除率90% | [ |
BTO NFs | RhB | 7.5 mg/L | 75 min去除率99% | [ |
TiO2/CM | MB | 200 mg/L | 12 h去除率99.9% | [ |
CNTs-C/PTFE | TCS | 50 mg/L | 1 h去除率98% | [ |
Cu-rGO-PC | DCF | 20 mg/L | 1 h去除率100% | [ |
[1] |
Qaseem, S.; Dlaminiabe, D. S.; Zikalala, S. A.; Teshaab, J. M.; Husainc, M. D.; Wang, C. H.; Jiang, Y. M.; Wei, X.; Vilakatig, J. D.; Li, J. X. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125270.
doi: 10.1016/j.colsurfa.2020.125270 |
[2] |
Tan, Y. X.; Wen, Q. X.; Li, M.; Yang, B. X.; Tang, Y. C.; Li, A.; Chen, Z. Q. Sep. Purif. Technol. 2022, 303, 122227.
doi: 10.1016/j.seppur.2022.122227 |
[3] |
Xu, L.; Sun, Y. K.; Du, L. S.; Zhang, J. J. Desalination 2014, 352, 58.
doi: 10.1016/j.desal.2014.08.013 |
[4] |
Qi, Y. F.; Zhou, X. Y.; Li, Z. J.; Yin, R. L.; Qin, J. H.; Li, H. S.; Guo, W. Q.; Li, A. J.; Qiu, R. L. Catalysts 2022, 12, 1327.
doi: 10.3390/catal12111327 |
[5] |
Kimura, K.; Yamakawa, M.; Hafuka, A. Chemosphere 2021, 277, 130244.
doi: 10.1016/j.chemosphere.2021.130244 |
[6] |
Ma, X.-Y.; Sun, Z.-R. Modern Chemical Industry 2018, 38, 42. (in Chinese)
|
(麻晓越, 孙治荣, 现代化工, 2018, 38, 42.)
|
|
[7] |
Zhou, Y.-J.; Ji, Q.-H.; Hu, Z.-C.; Qu, J.-H. Journal of Civil and Environmental Engineering 2022, 44, 104. (in Chinese)
|
(周雨珺, 吉庆华, 胡承志, 曲久辉, 土木与环境工程学报, 2022, 44, 104.)
|
|
[8] |
Li, Y. L.; Jia, B. M.; Fan, Y. Z.; Zhu, K. L.; Li, G. Q.; Su, C. Y. Adv. Energy. Mater. 2018, 8, 1702048.
doi: 10.1002/aenm.v8.9 |
[9] |
Barbari, K.; Delimi, R.; Benredjem, Z.; Saaidia, S, ; Djemel, A.; Chouchane, T.; Oturan, N.; Oturan, M. A. Chemosphere 2018, 203, 1.
doi: S0045-6535(18)30543-5 pmid: 29604424 |
[10] |
Zhu, J. H.; Zhang, Q.; Zhao, Y. J.; Zhang, R. Y.; Liu, L. F.; Yu, J. Y. Carbon 2022, 202, 13.
doi: 10.1016/j.carbon.2022.11.021 |
[11] |
Xie, W. H.; Shi, Y. L.; Wang, Y. X.; Zheng, Y. L.; Liu, H.; Hu, Q.; Wei, S. Y.; Gu, H. B.; Guo, Z. H. Chem. Eng. J. 2020, 405, 126585.
doi: 10.1016/j.cej.2020.126585 |
[12] |
Chen, Y. Y.; Li, F. L.; Dong, X. C.; Guo, D.; Huang, Y. X.; Li, S. P. J. Alloys Compd. 2021, 869, 159258.
doi: 10.1016/j.jallcom.2021.159258 |
[13] |
Huang, G.; Chen, Y.-Z.; Jiang, H.-L. Acta Chim. Sinica 2016, 74, 113. (in Chinese)
doi: 10.6023/A15080547 |
(黄刚, 陈玉贞, 江海龙. 化学学报, 2016, 74, 113.)
doi: 10.6023/A15080547 |
|
[14] |
Hu, F.-P.; Zhu, J.-H.; Zhan, P.; Wang, X.-Y.; Long, L.-L.; Xu, L.; Xu, G.-P. Modern Chemical Industry. 2021, 41, 19. (in Chinese)
|
(胡锋平, 朱建华, 占鹏, 王晓英, 龙兰兰, 许莉, 许高平, 现代化工, 2021, 41, 19.)
|
|
[15] |
Yadava, D.; Aminib, M.; Ehrmann, A. Eur. Polym. J. 2020, 138, 109963.
doi: 10.1016/j.eurpolymj.2020.109963 |
[16] |
Anton, F. US 1975504A, 1934.
|
[17] |
Qin, L. J. Mater. Sci. Lett. 1997, 16, 457.
doi: 10.1023/A:1018504108114 |
[18] |
Feng, L.; Yang, Z. L.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Ma, Y. M.; Yang, Z. Z.; Jiang, L.; Zhu, D. B. Angew. Chem. Int. Ed. 2003, 42, 4217.
doi: 10.1002/(ISSN)1521-3773 |
[19] |
Maldonado, S.; Stevenson, K. J. J. Phys. Chem. B 2005, 109, 4707.
doi: 10.1021/jp044442z |
[20] |
Dou, S.; Li, X.; Tao, L.; Huo, J.; Wang, S. Chem. Commun. 2016, 52, 9727.
doi: 10.1039/C6CC05244D |
[21] |
Ding, Q.; Liu, M.; Miao, Y.; Huang, Y.; Liu, T. Electrochim. Acta 2015, 159, 1.
doi: 10.1016/j.electacta.2015.01.197 |
[22] |
Wang, Y.; Zhao, M.; Hou, C.; Chen, W.; Li, S.; Ren, R.; Li, Z. Chem. Eng. J. 2021, 414, 128940.
doi: 10.1016/j.cej.2021.128940 |
[23] |
Li, K.-H.; Cai, J.-W.; Zhang, Z.-H.; Tao, J.-T.; Wu, J.-L.; Zeng, S.-Y.-Y.; Wu, S.-P. J. Funct. Mater. 2021, 52, 8. (in Chinese)
|
(李亢悔, 蔡佳伟, 张自航, 陶江涛, 吴加龙, 曾诗喻瑶, 吴述平, 功能材料, 2021, 52, 8.)
|
|
[24] |
Xue, C.; Hu, Y.-Y.; Huang, Z.-M. Polym. Bull. 2009, 6, 10. (in Chinese)
|
(薛聪, 胡影影, 黄争鸣, 高分子通报, 2009, 6, 10.)
|
|
[25] |
Li, Q.; Li, X.-X.; Xie, F.-F.; Zhou, W.-L.; Chen, K.-Y.; Liu, Y.-Q. J. Text. Res. 2022, 43, 178. (in Chinese)
|
(李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清, 纺织学报, 2022, 43, 178.)
|
|
[26] |
Wei, X.-Y.; Zhang, W.-J.; Chen, L.-W.; Liu, C.-Z.; Lin, Q.-F.; Jiang, Y.-M.; Wang, X.-J. Mater. Rev. 2022, 36, 51. (in Chinese)
|
(卫新宇, 张文瑾, 陈龙威, 刘成周, 林启富, 江贻满, 王晓洁, 材料导报, 2022, 36, 51.)
|
|
[27] |
Chen, H.; Ren, L.-L.; He, J.-Y.; Yao, Y.-X.; Ma, X. Modern Chemical Industry. 2022, 42, 82. (in Chinese)
|
(陈慧, 任玲玲, 贺建芸, 姚雅萱, 马旭, 现代化工, 2022, 42, 82.)
|
|
[28] |
Song, Y.-L.; Zhao, F.; Li, Z.-Z.; Huang, H.-J. Bull. Chin. Ceram. Soc. 2021, 40, 2770. (in Chinese)
|
(宋一龙, 赵芳, 李志尊, 黄红军, 硅酸盐通报, 2021, 40, 2770.)
|
|
[29] |
Huang, Z.-B.; Gao, D.-S.; Li, Z.-H.; Lei, G.-T.; Zhou, J. Acta Chim. Sinica 2007, 65, 1007. (in Chinese)
|
(黄再波, 高德淑, 李朝晖, 雷钢铁, 周姬, 化学学报, 2007, 65, 1007.)
|
|
[30] |
Liu, Y. Ph.D. Dissertation, Donghua University, Shanghai, 2008. (in Chinese)
|
(刘雍, 博士论文, 东华大学, 上海, 2008.)
|
|
[31] |
Hu, P.-R.; Wang, H.-Z.; Li, Y.-G.; Zhang, Q.-H. Bull. Chin. Ceram. Soc. 2012, 31, 6. (in Chinese)
|
(胡沛然, 王宏志, 李耀刚, 张青红, 硅酸盐通报, 2012, 31, 6.)
|
|
[32] |
Shi, C.-D.; Yu, S.-Y.; Li, C.-J. Fine Chemicals 2020, 37, 9. (in Chinese)
|
(施成东, 于淑艳, 李从举, 精细化工, 2020, 37, 9.)
|
|
[33] |
Sultanov, F.; Daulbayev, C.; Bakbolat, B.; Daulbayev, O.; Bigaj, M.; Mansurov, Z.; Kuterbekov, K.; Bekmyrza, K. Chem. Phys. Lett. 2019, 737, 136821.
doi: 10.1016/j.cplett.2019.136821 |
[34] |
Qiao, H.; Yang, X.; Wei, J.-Z. Technology & Market. 2010, 6, 13. (in Chinese)
|
(乔辉, 杨笑, 魏金柱, 技术与市场, 2010, 6, 13.)
|
|
[35] |
Geus, J. W.; Van Dillen, A. J.; Hoogenraad, M. S. MRS Online Proceedings Library 1994, 368, 87.
|
[36] |
Xiao, J.-L. M.S. Thesis, Chongqing University, Chongqing, 2002. (in Chinese)
|
(肖金龙, 硕士论文, 重庆大学, 重庆, 2002.)
|
|
[37] |
Maphutha, S.; Moothi, K.; Meyyappan, M.; Lyuke, S. E. Sci. Rep. 2013, 3, 1509.
doi: 10.1038/srep01509 pmid: 23518875 |
[38] |
Chen, Z.-X.; Zheng, B.-Y.; Li, X.-X.; Fu, M.-L.; Xie, S.-G.; Deng, C.; Hu, Y.-H. Chem. Ind. Eng. Prog. 2010, 29, 94. (in Chinese)
|
(陈彰旭, 郑炳云, 李先学, 傅明连, 谢署光, 邓超, 胡衍华, 化工进展, 2010, 29, 94.)
|
|
[39] |
Wu, X.-H.; Hong, X.-T.; Nan, J.-M.; Li, L.-S.; Chen, H.-Y. Mater. Rev. 2012, 26, 61. (in Chinese)
|
(吴小辉, 洪孝挺, 南俊民, 李来胜, 陈红雨, 材料导报, 2012, 26, 61.)
|
|
[40] |
Ma, M.-J.; Zhang, A.-Y. J. Henan Polytech. Univ., Nat. Sci. 2008, 27, 696. (in Chinese)
|
(马名杰, 张爱芸, 河南理工大学学报: 自然科学版, 2008, 27, 696.)
|
|
[41] |
Cai, B.; Hu, Y.; Du, B.-J.; Li, J.-J. Mater. Rev. 2010, 24, 107. (in Chinese)
|
(蔡彬, 胡炜, 杜宝吉, 李健江, 材料导报, 2010, 24, 107.)
|
|
[42] |
Feng, L.; Li, S. H.; Li, H. J.; Zhai, J.; Song, Y. L.; Jiang, L.; Zhu, D. B. Angew. Chem. Int. Ed. 2002, 41, 1221.
doi: 10.1002/(ISSN)1521-3773 |
[43] |
Gao, L.-H.; Shi, Y.-L.; Li, W.-H.; Liu, J.-M.; Cai, Y.-Q. Environ. Chem. 2013, 32, 15. (in Chinese)
|
(高立红, 史亚利, 厉文辉, 刘杰民, 蔡亚岐, 环境化学, 2013, 32, 15.)
|
|
[44] |
Man, S. S.; Ge, X. T.; Xu, K.; Yang, H. F.; Bao, H. B.; Sun, Q.; He, M.; Xie, Y. T.; Li, A. Q.; Mo, Z. H.; Yang, W. J.; Li, X. Sep. Purif. Technol. 2022, 280, 119816.
doi: 10.1016/j.seppur.2021.119816 |
[45] |
Shi, C. D.; Yu, S. Y.; Wang, L.; Zhang, X. L.; Lin, X. Q.; Li, C. J. Journal of Environmental Chemical Engineering. 2021, 9, 106540.
doi: 10.1016/j.jece.2021.106540 |
[46] |
Yu, S.; Gao, Y.; Kjan, R.; Liang, P.; Zhang, X.; Huang, X. J. Membr. Sci. 2020, 614, 118368.
doi: 10.1016/j.memsci.2020.118368 |
[47] |
Zhang, L.-S.; Jiang, L.-L. Environ. Prot. Chem. Ind. 2000, 20, 5. (in Chinese)
|
(张林生, 蒋岚岚, 化工环保, 2000, 20, 5.)
|
|
[48] |
Sun, Y. Y.; Wang, G.; Dong, Q.; Qian, B. Q.; Meng, Y. L.; Qiu, J. S. Chem. Eng. J. 2014, 253, 73.
doi: 10.1016/j.cej.2014.05.017 |
[49] |
Liu, D. M.; Jin, C. C.; Shan, F. K.; He, J. J.; Wang, F. ACS Appl. Mater. Interfaces 2020, 9, 17443.
|
[50] |
Pei, S.-Z.; Zhu, L.; Zhang, Z.-M. Teng, J.; Liu, X.-F.; You, S.-J. Acta Sci. Circumstantiae 2020, 40, 3658. (in Chinese)
|
(裴姝钊, 朱琳, 张梓萌, 滕洁, 刘雪峰, 尤世界, 环境科学学报, 2020, 40, 3658.)
|
|
[51] |
Xiang, Q.; Xie, S.-Y.; Zhang, J.-L.; Yu, L.-J.; Shen, H.-Y.; Hu, M.-Q.; Dong, X.-Y. Ind. Water Treat. 2017, 37, 5. (in Chinese)
|
(项奇, 谢晟瑜, 张佳丽, 俞林佳, 沈昊宇, 胡美琴, 董新艳, 工业水处理, 2017, 37, 5.)
|
|
[52] |
Vieno, N.; Sillanpää, M. Environ. Int. 2014, 69, 28.
doi: 10.1016/j.envint.2014.03.021 |
[53] |
Zhou, X. Y.; Guo, J.; Zhang, W.; Zhou, P.; Deng, J. J.; Lin, K. F. J. Hazard. Mater. 2014, 273, 27.
doi: 10.1016/j.jhazmat.2014.03.003 |
[54] |
Naidoo, V.; Swan, G. E. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 149, 269.
doi: 10.1016/j.cbpc.2008.07.014 |
[55] |
Kojima, S.; Bohner, A.; Von Wirén, N. J. Membr. Biol. 2006, 212, 83.
doi: 10.1007/s00232-006-0868-6 |
[56] |
Qu, C.; Ren, N.; Zhang, S. J.; Li, Y. G.; Meng, S. J.; Li, X. H.; Wang, S. S.; Liang, D. W.; Li, A. R. Chemosphere 2021, 272, 129453.
doi: 10.1016/j.chemosphere.2020.129453 |
[57] |
Kumar, A.; Omar, R. A.; Verma, N. Chemosphere 2020, 248, 126030.
doi: 10.1016/j.chemosphere.2020.126030 |
[58] |
Alajami, M.; Yassin, M. A.; Ghouri, Z. K.; Al-Meer, S.; Barakat, N. A. M. Int. J. Hydrogen. Energy. 2018, 43, 5561.
doi: 10.1016/j.ijhydene.2018.01.163 |
[59] |
Martinez-Huitle, C. A.; Ferro, S. Chem. Soc. Rev. 2006, 35, 1324.
doi: 10.1039/B517632H |
[60] |
Feng, Y.-J.; Cui, Y.-H.; Sun, L.-X.; Liu, J.-F.; Cai, W.-M. Journal of Harbin Institute of Technology 2004, 36, 450. (in Chinese)
|
(冯玉杰, 崔玉虹, 孙丽欣, 刘峻峰, 蔡伟民, 哈尔滨工业大学学报, 2004, 36, 450.)
|
|
[61] |
Comninellis, C. Electrochim. Acta 1994, 39, 1857.
doi: 10.1016/0013-4686(94)85175-1 |
[62] |
Singh, S.; Lo, S. L.; Srivastava, V. C.; Hiwarkar, A. D. J. Environ. Chem. Eng. 2016, 4, 2911.
doi: 10.1016/j.jece.2016.05.036 |
[63] |
Shi, C. D.; Yu, S. Y.; Li, C. J. Chem. Eng. J. 2022, 441, 136052.
doi: 10.1016/j.cej.2022.136052 |
[64] |
Chen, Y.; Hong, L.; Xue, H. M.; Han, W. Q.; Wang, L. J.; Sun, X. Y.; Li, J. S. J. Electroanal. Chem. 2010, 648, 119.
doi: 10.1016/j.jelechem.2010.08.004 |
[65] |
Pei, S.; Shen, C.; Zhang, C.; Ren, N.; You, S. Environ. Sci. Technol. 2019, 53, 4406.
doi: 10.1021/acs.est.8b06773 |
[66] |
Pei, S. Z.; Teng, J.; Ren, N. Q.; You, S. J. Environ. Sci. Technol. 2020, 54, 4573.
doi: 10.1021/acs.est.9b05929 |
[67] |
Pei, S. Z.; You, S, J.; Zhang, J. N. ACS. EST. Eng. 2021, 1, 1502.
doi: 10.1021/acsestengg.1c00141 |
[68] |
Guo, Y.; Long, J. F.; Huang, J.; Yu, G.; Wang, Y. J. Water Res. 2022, 215, 118275.
doi: 10.1016/j.watres.2022.118275 |
[69] |
Lu, C.-L.; Chang, H.; Sun, F.-H. J. Environ. Eng. Technol. 2022, 12, 70. (in Chinese)
|
(卢成龙, 常红, 孙福红, 环境工程技术学报, 2022, 12, 70.)
|
|
[70] |
Liu, Z. M.; Zhu, M. F.; Zhao, L.; Deng, C.; Ma, J.; Wang, Z.; Liu, H. B.; Wang, H. Chem. Eng. J. 2017, 314, 59.
doi: 10.1016/j.cej.2016.12.093 |
[71] |
Lv, F. J.; Zhao, X. Y.; Pan, S. L.; Cao, W. X.; Zuo, X. J.; Li, Y. J. Water Process Eng. 2022, 48, 102883.
doi: 10.1016/j.jwpe.2022.102883 |
[72] |
Gao, L. W.; Guo, Y.; Huang, J.; Wang, B.; Deng, S. B.; Yu, G.; Wang, Y. J. Chem. Eng. J. 2022, 441, 135970.
doi: 10.1016/j.cej.2022.135970 |
[1] | Yaning Li, Xiaoyan Wang, Yong Tang. The Regulation of Stereoselectivity in Radical Polymerization★ [J]. Acta Chimica Sinica, 2024, 82(2): 213-225. |
[2] | Guanglong Huang, Xiao-Song Xue. Computational Study on the Mechanism of Chen’s Reagent as Trifluoromethyl Source [J]. Acta Chimica Sinica, 2024, 82(2): 132-137. |
[3] | Haipeng Wang, Wensheng Cai, Xueguang Shao. Antifreeze Mechanism of Antifreeze Agents by Near Infrared Spectroscopy and Molecular Simulations★ [J]. Acta Chimica Sinica, 2023, 81(9): 1167-1174. |
[4] | Xinpu Fu, Xiuling Wang, Weiwei Wang, Rui Si, Chunjiang Jia. Fabrication and Mechanism Study of Clustered Au/CeO2 Catalyst for the CO Oxidation Reaction★ [J]. Acta Chimica Sinica, 2023, 81(8): 874-883. |
[5] | Guoqing Cui, Yiyang Hu, Yingjie Lou, Mingxia Zhou, Yuming Li, Yajun Wang, Guiyuan Jiang, Chunming Xu. Research Progress on the Design, Preparation and Properties of Catalysts for CO2 Hydrogenation to Alcohols [J]. Acta Chimica Sinica, 2023, 81(8): 1081-1100. |
[6] | Xiao Wang, Xingwen Wang, Lehui Xiao. Nanocatalytic Mechanisms Investigated by Single Molecule Fluorescence Imaging at the Single-Particle Level [J]. Acta Chimica Sinica, 2023, 81(8): 1002-1014. |
[7] | Tianjiao Ma, Jin Li, Xiaodong Ma, Xuesong Jiang. Temperature-controlled Dynamic Moisture-responsive Wrinkled Patterns★ [J]. Acta Chimica Sinica, 2023, 81(7): 749-756. |
[8] | Wang Jun, Xu Xiaomei, Zhou Jiaolong, Zhao Yanan, Sun Xiuli, Tang Yong, He Sufang, Yang Hongmei. Synthesis of New Sulfur-free and Phosphorus-free Ether-ester and Study on Its Properties As Ashless Friction Modifier [J]. Acta Chimica Sinica, 2023, 81(5): 461-468. |
[9] | Liu Zhenyu, Gan Li-Hua. Molecular Dynamics Simulation of Acetylene Pyrolysis into Fullerenes [J]. Acta Chimica Sinica, 2023, 81(5): 502-510. |
[10] | Jie Yang, Lin Ling, Yuxue Li, Long Lu. Density Functional Theory Study on Thermal Decomposition Mechanisms of Ammonium Perchlorate [J]. Acta Chimica Sinica, 2023, 81(4): 328-337. |
[11] | Juan Wang, Huamin Xiao, Ding Xie, Yuanru Guo, Qingjiang Pan. Density Functional Theory Study of Structures of Copper-doped and Graphitic Carbon Nitride-combined Zinc Oxides and Their Boosted Nitrogen Dioxide-sensing Performance [J]. Acta Chimica Sinica, 2023, 81(11): 1493-1499. |
[12] | Jing Zheng, Jinkun Liu, Chunyi Luo, Guochao Zeng, Guanglei Wu, Xu Hou. Research Progress of Active Colloidal Motors and Their Application Perspective in Electromagnetic Wave Absorption★ [J]. Acta Chimica Sinica, 2023, 81(10): 1394-1401. |
[13] | Xuelu Ma, Meng Li, Ming Lei. Trinuclear Transition Metal Complexes in Catalytic Reactions [J]. Acta Chimica Sinica, 2023, 81(1): 84-99. |
[14] | Luocong Wang, Zhewei Li, Caiwei Yue, Peihuan Zhang, Ming Lei, Min Pu. Theoretical Study on the Isomerization Mechanism of Azobenzene Derivatives under Electric Field [J]. Acta Chimica Sinica, 2022, 80(6): 781-787. |
[15] | Tiantian Lü, Wen Ma, Dongsun Zhan, Yanmin Zou, Jilong Li, Meiling Feng, Xiaoying Huang. Two New Three-Dimensional Lanthanide Metal-organic Frameworks for the Highly Efficient Removal of Cs+ Ions※ [J]. Acta Chimica Sinica, 2022, 80(5): 640-646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||