Article

Light-Responsible Room-Temperature Phosphorescence Materials Based on Diarylethene

  • Yiwei Liu ,
  • Liangwei Ma ,
  • Qiaochun Wang ,
  • Xiang Ma
Expand
  • Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
†Dedicated to the 90th anniversary of Acta Chimica Sinica

Received date: 2023-03-10

  Online published: 2023-04-10

Supported by

National Natural Science Foundation of China(21788102); National Natural Science Foundation of China(22125803); National Natural Science Foundation of China(22020102006); Shanghai Municipal Science and Technology Major Project(2018SHZDZX03); Program of Shanghai Academic/Technology Research Leader(20XD1421300); Fundamental Research Funds for the Central Universities; China National Postdoctoral Program for Innovative Talents(BX20220106); China Postdoctoral Science Foundation(2022M721140)

Abstract

Photochromic molecules show great potential in biological imaging, logic gates, super-resolution imaging and other fields due to the sensitivity, accuracy and penetrability of light. By utilizing their variations on physical properties upon light irradiation, the fluorescence signal of photochromic dyes can be turned on or off accurately by specific wavelength. As an important luminescent dye, organic room-temperature phosphorescence (RTP) materials have attracted great research interest of scientists by the triplet state radiation process, and have potential in sensing, anticounterfeiting, photo-dynamic therapy, and so forth. In this work, we combine the phosphorescence and photochromic properties together by connecting a classic photochromic dye (bithienylethene) with an efficient phosphor (thiochroman-4-one) via sp2 and sp3 linker (BTE1oand BTE2o). These compounds show typical photochromic phenomenon in solution and polymer matrix and have good fatigue resistance. During the irradiation, a clear isosbestic point can be observed, indicating the quantified transition between two isomers. The emission quenching of derivatives is considered as the radiative energy transfer between fluorescent open form and non-fluorescent closed form. It’s interesting that the fluorescence lifetime of BTE1oand BTE2oincreases after ultraviolet (UV) irradiation, which rules out the possibility of non-radiative energy transfer mechanism of the fluorescence quenching phenomena. In the poly(vinyl alcohol) (PVA) matrix, these compounds show decent RTP emission and millisecond level lifetime. And the RTP emission can also be reversibly turned “ON” or “OFF” via irradiation of different wavelengths. It’s very interesting that the phosphorescence lifetime also increases (from 16.1 to 19.4 ms) with the irradiation of UV light, which is identified with the variation of fluorescence lifetime in solution and PVA matrix. The increase of lifetime can rule out the non-radiative energy transfer mechanism for the phosphorescence quenching phenomena. Considering the fluorescence quenching phenomena in tetrahydrofuran (THF) solution, the fluorescence and phosphorescence quenching in PVA matrix should also be attributed to the form conversion and the radiative energy transfer process between open and closed isomers.

Cite this article

Yiwei Liu , Liangwei Ma , Qiaochun Wang , Xiang Ma . Light-Responsible Room-Temperature Phosphorescence Materials Based on Diarylethene[J]. Acta Chimica Sinica, 2023 , 81(5) : 445 -449 . DOI: 10.6023/A23030077

References

[1]
Sharifian, M. H.; Mahdavian, A. R.; Salehi-Mobarakeh, H. Langmuir 2017, 33, 8023.
[2]
Zhan, L.; Chen, Z.; Gong, S.; Xiang, Y.; Ni, F.; Zeng, X.; Xie, G.; Yang, C. Angew. Chem. Int. Ed. 2019, 58, 17651.
[3]
Mu, Y.; Liu, Y.; Tian, H.; Ou, D.; Gong, L.; Zhao, J.; Zhang, Y.; Huo, Y.; Yang, Z.; Chi, Z. Angew. Chem. Int. Ed. 2021, 60, 6367.
[4]
Zhang, Q.; Rao, S.-J.; Xie, T.; Li, X.; Xu, T.-Y.; Li, D.-W.; Qu, D.-H.; Long, Y.-T.; Tian, H. Chem 2018, 4, 2670.
[5]
Chen, S.; Wang, Y.; Nie, T.; Bao, C.; Wang, C.; Xu, T.; Lin, Q.; Qu, D. H.; Gong, X.; Yang, Y.; Zhu, L.; Tian, H. J. Am. Chem. Soc. 2018, 140, 17992.
[6]
Ma, L.; Ding, B.; Yuan, Z.; Ma, X.; Tian, H. ACS Mater. Lett. 2021, 1300.
[7]
Li, Q.; Li, Z. Acc. Chem. Res. 2020, 53, 962.
[8]
Wu, B.; Xu, X.; Tang, Y.; Han, X.; Wang, G. Adv. Optical Mater. 2021, 9, 2101266.
[9]
Peisheng, C.; Qian, C.; Peng, W. Chin. J. Chem. 2023, 41, 979.
[10]
Hou, L.; Ringstrom, R.; Maurer, A. B.; Abrahamsson, M.; Andreasson, J.; Albinsson, B. J. Am. Chem. Soc. 2022, 144, 17758.
[11]
Li, Z.; Wang, G.; Ye, Y.; Li, B.; Li, H.; Chen, B. Angew. Chem. Int. Ed. 2019, 58, 18025.
[12]
Ma, L. W.; Wang, S.; Li, C. P.; Cao, D. R.; Li, T.; Ma, X. Chem. Commun. 2018, 54, 2405.
[13]
Ma, L. W.; Li, C. P.; Yan, Q.; Wang, S.; Miao, W. G.; Cao, D. R. Chinese Chem. Lett. 2020, 31, 361.
[14]
Zhang, J.; Wang, J.; Tian, H. Mater. Horiz. 2014, 1, 169.
[15]
Zhang, J.; Fu, Y.; Han, H. H.; Zang, Y.; Li, J.; He, X. P.; Feringa, B. L.; Tian, H. Nat. Commun. 2017, 8, 987.
[16]
Wu, Y.; Guo, Z.; Zhu, W.-H.; Wan, W.; Zhang, J.; Li, W.; Li, X.; Tian, H.; Li, A. D. Q. Mater. Horiz. 2016, 3, 124.
[17]
Luo, W.; Tang, Y.; Zhang, X.; Wu, Z.; Wang, G. Adv. Optical Mater. 2023, 11, 2202259.
[18]
Song, J.; Ma, X. Chin. J. Org. Chem. 2021, 41, 4519. (in Chinese)
[18]
(宋金明, 马骧, 有机化学, 2021, 41, 4519.)
[19]
Qi, Q.; Li, C.; Liu, X.; Jiang, S.; Xu, Z.; Lee, R.; Zhu, M.; Xu, B.; Tian, W. J. Am. Chem. Soc. 2017, 139, 16036.
[20]
Fu, Y.; Han, H.-H.; Zhang, J.; He, X.-P.; Feringa, B. L.; Tian, H. J. Am. Chem. Soc. 2018, 140, 8671.
[21]
Ma, L.; Ma, X. Sci. China Chem. 2022, 66, 304.
[22]
Ma, L.; Sun, S.; Ding, B.; Ma, X.; Tian, H. J. A. F. M. Adv. Funct. Mater. 2021, 31, 2010659.
[23]
Gao, H.; Ma, X. Aggregate 2021, 2, e38.
[24]
Wang, Z.; Cheng, X.; Xie, Y.; Liu, S.; Dong, M.; Zhao, J.; Liang, F.; An, Z.; Huang, W. CCS Chem. 2023, 5, 292.
[25]
Luo, W.; Wang, G. Adv. Optical Mater. 2020, 8, 2001362.
[26]
Wang, J.; Huang, Z.; Ma, X.; Tian, H. Angew. Chem. Int. Ed. 2020, 59, 9928.
[27]
Yang, J.; Fang, M.; Li, Z. Acc. Mater. Res. 2021, 2, 644.
[28]
Ye, W.; Ma, H.; Shi, H.; Wang, H.; Lv, A.; Bian, L.; Zhang, M.; Ma, C.; Ling, K.; Gu, M.; Mao, Y.; Yao, X.; Gao, C.; Shen, K.; Jia, W.; Zhi, J.; Cai, S.; Song, Z.; Li, J.; Zhang, Y.; Lu, S.; Liu, K.; Dong, C.; Wang, Q.; Zhou, Y.; Yao, W.; Zhang, Y.; Zhang, H.; Zhang, Z.; Hang, X.; An, Z.; Liu, X.; Huang, W. Nat. Mater. 2021, 20, 1539.
[29]
Luo, W.; Xu, X.; Tang, Y.; Wu, Z.; Wang, G. Sci. China Mater. 2022, 66, 1180.
[30]
Tian, Y.; Tong, X.; Li, J.; Gao, S.; Cao, R. Chin. J. Chem. 2021, 40, 487.
[31]
Song, J.; Ma, L.; Sun, S.; Tian, H.; Ma, X. Angew. Chem. Int. Ed. 2022, e202206157.
[32]
Yuan, Z.; Wang, J.; Chen, L.; Zou, L.; Gong, X.; Ma, X. CCS Chem. 2020, 2, 158.
[33]
Gui, H.; Huang, Z.; Yuan, Z.; Ma, X. CCS Chem. 2021, 3, 481.
[34]
Zhou, Y.; Qin, W.; Du, C.; Gao, H.; Zhu, F.; Liang, G. Angew. Chem. Int. Ed. 2019, 58, 12102.
[35]
Zhang, X.; Du, L.; Zhao, W.; Zhao, Z.; Xiong, Y.; He, X.; Gao, P. F.; Alam, P.; Wang, C.; Li, Z.; Leng, J.; Liu, J.; Zhou, C.; Lam, J.; Phillips, D.; Zhang, G.; Tang, B. Nat. Commun. 2019, 10, 5161.
[36]
Wu, Q.; Ma, H.; Ling, K.; Gan, N.; Cheng, Z.; Gu, L.; Cai, S.; An, Z.; Shi, H.; Huang, W. ACS Appl. Mater. Interfaces 2018, 10, 33730.
[37]
Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[38]
Wang, J.; Li, Z. Acta Chim. Sinica 2021, 79, 575. (in Chinese)
[38]
(王金凤, 李振, 化学学报, 2021, 79, 575.)
[39]
Wang, C.; Ma, X. K.; Guo, P.; Jiang, C.; Liu, Y. H.; Liu, G.; Xu, X.; Liu, Y. Adv. Sci. 2022, 9, e2103041.
[40]
Ma, L.; Xu, Q.; Sun, S.; Ding, B.; Huang, Z.; Ma, X.; Tian, H. Angew. Chem. Int. Ed. 2021, e202115748.
[41]
Tian, Y.; Yang, X.; Gong, Y.; Wang, Y.; Fang, M.; Yang, J.; Tang, Z.; Li, Z. Sci. China Chem. 2021, 64, 445.
[42]
Bhattacharjee, I.; Acharya, N.; Ray, D. Chem. Commun. 2019, 55, 1899.
[43]
Zhang, Z.; Wang, W.; Jin, P.; Xue, J.; Sun, L.; Huang, J.; Zhang, J.; Tian, H. Nat. Commun. 2019, 10, 4232.
[44]
Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Chem. Rev. 2014, 114, 12174.
[45]
Giordano, L.; Jovin, T. M.; Irie, M.; Jares-Erijman, E. A. J. Am. Chem. Soc. 2002, 124, 7481.
[46]
Kim, D.; Kwon, J. E.; Park, S. Y. Adv. Funct. Mater. 2018, 28, 1706213.
[47]
Su, Y.; Phua, S. Z. F.; Li, Y.; Zhou, X.; Jana, D.; Liu, G.; Lim, W. Q.; Ong, W. K.; Yang, C.; Zhao, Y. Sci. Adv. 2018, 4, eaas9732.
[48]
Xu, Q.; Ma, L.; Sun, S.; Ma, X. J. Mater. Chem. C 2021, 9, 14623.
[49]
Gan, N.; Shi, H.; An, Z.; Huang, W. Adv. Funct. Mater. 2018, 28, 1802657.
Outlines

/