Communication

Click Chemistry-based Synchrotron X-ray Imaging Tags

  • Qiaowei Tang ,
  • Xiaoqing Cai ,
  • Dapeng Yin ,
  • Huating Kong ,
  • Xiangzhi Zhang ,
  • Jichao Zhang ,
  • Qinglong Yan ,
  • Ying Zhu ,
  • Chunhai Fan
Expand
  • a Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
    b Institute of Materials Biology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444
    c School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200025
    d Xiangfu Laboratory, Jiashan 314102
    e The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210
    f University of Chinese Academy of Sciences, Beijing 100049
†These authors contributed equally to this work.
†Dedicated to the 90th anniversary of Acta Chimica Sinica

Received date: 2023-03-02

  Online published: 2023-04-12

Supported by

National Key Research and Development Program of China(2022YFA1603600); National Natural Science Foundation of China(22022410); National Natural Science Foundation of China(82050005); 2022 Shanghai “Science and Technology Innovation Action Plan” Fundamental Research Project(22JC1401203); Youth Innovation Promotion Association CAS(2016236)

Abstract

One of the basic goals of cell biology is to identify multiple biological molecules within cells and understand the complex interactions between biological molecules in cellular life activities. Synchrotron-based X-ray microscopy has high spatial resolution and good energy (element) resolution, which has great application potential in the recognition and imaging of intracellular biomolecules. At present, the probes that have been developed for synchrotron-based X-ray microscopy are mainly immunostaining probes and genetic labeling probes. Immunostaining probes are prone to lead to cross-reactions due to their dependence on antigen-antibody reactions. The genetic labeling probes, based on gene coding tags, catalyze the generation of X-ray sensitive polymers. However, the polymers used to provide X-ray imaging signals have no fixed morphology. When it is applied to cell imaging, the positioning accuracy will be reduced due to the diffusion of tags in cells, which is an inherent defect of such imaging tags. In addition, there are few existing systems that can express each other independently and step by step for this type of probe. Therefore, both types of X-ray probes mentioned above are difficult to achieve simultaneous high-resolution imaging observation of multiple biological target molecules in cellular life activities. In this research paper, by using the characteristics of X-ray that has good energy resolution and does not interfere with each other between element spectra, we can synthesize polydopamine (PDA) nanoparticles in a controlled manner, modify azide groups on PDA nanoparticles and chelate metal ions, develop a click chemistry based synchronous X-ray imaging tag (PDA-N3-Metal), and conduct synchrotron radition X-ray imaging on the tag with an imaging resolution of 30 nm. The research results lay a good foundation for further preparation of X-ray probes based on click chemistry, and for realizing the specific recognition and imaging of multiple biological molecules in cells at the same time.

Cite this article

Qiaowei Tang , Xiaoqing Cai , Dapeng Yin , Huating Kong , Xiangzhi Zhang , Jichao Zhang , Qinglong Yan , Ying Zhu , Chunhai Fan . Click Chemistry-based Synchrotron X-ray Imaging Tags[J]. Acta Chimica Sinica, 2023 , 81(5) : 441 -444 . DOI: 10.6023/A23030061

References

[1]
Kong, H. T.; Zhang, J. C.; Li, J.; Wang, J.; Shin, H. J.; Tai, R. Z.; Yan, Q. L.; Xia, K.; Hu, J.; Wang, L. H.; Zhu, Y.; Fan, C. H. Natl. Sci. Rev. 2020, 7, 1218.
[2]
Zhu, Y.; Zhang, J. C.; Li, A. G.; Zhang, Y. Q.; Fan, C. H. Curr. Opin. Chem. Biol. 2017, 39, 11.
[3]
Gao, J.; Gu, Z. Natl. Sci. Rev. 2021, 8, nwaa206.
[4]
Liu, Z. C.; Zhu, Y.; Zhang, L. M.; Jiang, W. P.; Liu, Y. W.; Tang, Q. W.; Cai, X. Q.; Li, J.; Wang, L. H.; Tao, C. L.; Yin, X. Z.; Li, X. W.; Hou, S. G.; Jiang, D. W.; Liu, K.; Zhou, X.; Zhang, H. J.; Liu, M. L.; Fan, C. H.; Tian, Y. Sci. China: Chem. 2023, 66, 324.
[5]
Yan, X.; Cai, X. Q.; Tang, Q. W.; Zhou, F.; Zhu, Y.; Wang, L. H.; Hu, J. Nuclear Techniques 2022, 45, 040103. (in Chinese)
[5]
(燕鑫, 蔡小青, 汤乔伟, 周峰, 诸颖, 王丽华, 胡钧, 核技术, 2022, 45, 040103.)
[6]
Tian, T.; Zhang, J. C.; Lei, H. Z.; Zhu, Y.; Shi, J. Y.; Hun, J.; Huang, Q.; Fan, C. H.; Sun, Y. H. Nucl. Sci. Tech. 2015, 26, 030506.
[7]
Lai, H. M.; Tang, Y. M.; Lau, Z.; Campbell, R.; Yau, J.; Chan, Y.; Chan, W.; Wong, T.; Wong, H.; Yan, L.; Wu, W.; Wong, S.; Kwok, K. W.; Wing, Y. K.; Lam, H.; Ng, H. K.; Mrsic-Flogel, T.; Mok, V.; Chan, J.; Ko, H. Nat. Methods 2022, 19, 1137.
[8]
Yan, M. L.; Zuo, T. T.; Zhang, J. C.; Wang, Y. Y.; Zhu, Y.; Wang, L. H.; Zhou, Y.; Sun, Y. H. Chem. Commun. 2022, 58, 713.
[9]
Rhee, H. W.; Zou, P.; Udeshi, N. D.; Martell, J. D.; Mootha, V. K.; Carr, S. A.; Ting, A. Y. Science 2013, 339, 1328.
[10]
Kolb, H. C.; Sharpless, K. B. Drug Discov. Today 2003, 8, 1128.
[11]
Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
[12]
Lai, C. W.; Sun, Y.; Yang, H.; Zhang, X. Q.; Lin, B. P. Acta Chim. Sinica 2013, 71, 1201. (in Chinese)
[12]
(来常伟, 孙莹, 杨洪, 张雪勤, 林保平, 化学学报, 2013, 71, 1201.)
[13]
Best, M. D. Biochemistry 2009, 48, 6571.
[14]
Xie, R.; Dong, L.; Du, Y. F.; Zhu, Y. T.; Hua, R.; Zhang, C.; Chen, X. Proc. Natl. Acad. Sci. 2016, 113, 5173.
[15]
Sawa, M.; Hsu, T.-L.; Itoh, T.; Sugiyama, M.; Hanson, S. R.; Vogt, P. K.; Wong, C.-H. Proc. Natl. Acad. Sci. 2006, 103, 12371.
[16]
Fan, Q. L.; Cheng, K.; Hu, X.; Ma, X. W.; Zhang, R. P.; Yang, M.; Lu, X. M.; Xing, L.; Huang, W.; Gambhir, S. S.; Cheng, Z. J. Am. Chem. Soc. 2014, 136, 15185.
[17]
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Science 2007, 318, 426.
[18]
Qi, C.; Fu, L.-H.; Xu, H.; Wang, T.-F.; Lin, J.; Huang, P. Sci. China: Chem. 2019, 62, 162.
[19]
Huang, L.; Liu, M. Y.; Huang, H. Y.; Wen, Y. Q.; Zhang, X. Y.; Wei, Y. Biomacromolecules 2018, 19, 1858.
[20]
Liu, Y. L.; Ai, K. L.; Lu, L. H. Chem. Rev. 2014, 114, 5057.
[21]
Cheng, W.; Zeng, X. W.; Chen, H. Z.; Li, Z. M.; Zeng, W. F.; Mei, L.; Zhao, Y. L. ACS Nano 2019, 13, 8537.
[22]
Zhang, X. Z.; Xu, Z. J.; Zhen, X. J.; Wang, Y.; Guo, Z.; Yan, R.; Chang, R.; Zhou, R. R.; Tai, R. Z. Acta Phys. Sin. 2010, 59, 4535. (in Chinese)
[22]
(张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠, 物理学报, 2010, 59, 4535.)
[23]
Hell, S. W. Science 2007, 316, 1153.
[24]
Blom, H.; Widengren, J. Chem. Rev. 2017, 117, 7377.
[25]
G?ttfert, F.; Wurm, C. A.; Mueller, V.; Berning, S.; Cordes, V. C.; Honigmann, A.; Hell, S. W. Biophys. J. 2013, 105, L01.
[26]
Samanta, S.; Gong, W.; Li, W.; Sharma, A.; Shim, I.; Zhang, W.; Das, P.; Pan, W.; Liu, L.; Yang, Z.; Qu, J.-l.; Kim, J. S. Coord. Chem. Rev. 2019, 380, 17.
[27]
Samanta, S.; He, Y.; Sharma, A.; Kim, J.; Pan, W.; Yang, Z.; Li, J.; Yan, W.; Liu, L.; Qu, J.; Kim, J. S. Chem 2019, 5, 1697.
[28]
Heintzmann, R.; Huser, T. Chem. Rev. 2017, 117, 13890.
[29]
Laughlin, S. T.; Bertozzi, C. R. Nat. Protoc. 2007, 2, 2930.
[30]
Flors, C. J. Microsc. 2013, 251, 1.
Outlines

/