Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (5): 441-444.DOI: 10.6023/A23030061 Previous Articles     Next Articles

Special Issue: 庆祝《化学学报》创刊90周年合辑

Communication

基于点击化学的同步辐射X射线成像标签

汤乔伟a,d,f, 蔡小青a,e,f, 殷大鹏a,f, 孔华庭e, 张祥志e, 张继超e, 闫庆龙d, 诸颖a,b,f, 樊春海c   

  1. a 中国科学院上海应用物理研究所 中国科学院微观界面物理与探测重点实验室 上海 201800
    b 上海大学理学院化学系 材料生物学研究所 上海 200444
    c 上海交通大学化学化工学院 上海 200025
    d 祥符实验室 嘉善 314102
    e 中国科学院上海高等研究院 基础交叉研究中心 上海同步辐射光源 张江实验室 上海 201210
    f 中国科学院大学 北京 100049
  • 投稿日期:2023-03-02 发布日期:2023-04-11
  • 作者简介:
    汤乔伟、蔡小青、殷大鹏为本文共同第一作者
    庆祝《化学学报》创刊90周年.
  • 基金资助:
    受国家重点研发计划(2022YFA1603600); 国家自然科学基金(22022410); 国家自然科学基金(82050005); 上海市2022年度“科技创新行动计划”基础研究领域项目(22JC1401203); 中科院青年创新促进会(2016236)

Click Chemistry-based Synchrotron X-ray Imaging Tags

Tang Qiaoweia,d,f, Cai Xiaoqinga,e,f, Yin Dapenga,f, Kong Huatinge, Zhang Xiangzhie, Zhang Jichaoe, Yan Qinglongd, Zhu Yinga,b,f, Fan Chunhaic   

  1. a Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
    b Institute of Materials Biology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444
    c School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200025
    d Xiangfu Laboratory, Jiashan 314102
    e The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210
    f University of Chinese Academy of Sciences, Beijing 100049
  • Received:2023-03-02 Published:2023-04-11
  • Contact: *E-mail: zhuying@sinap.ac.cn, fanchunhai@sjtu.edu.cn
  • About author:
    These authors contributed equally to this work.
    Dedicated to the 90th anniversary of Acta Chimica Sinica
  • Supported by:
    National Key Research and Development Program of China(2022YFA1603600); National Natural Science Foundation of China(22022410); National Natural Science Foundation of China(82050005); 2022 Shanghai “Science and Technology Innovation Action Plan” Fundamental Research Project(22JC1401203); Youth Innovation Promotion Association CAS(2016236)

One of the basic goals of cell biology is to identify multiple biological molecules within cells and understand the complex interactions between biological molecules in cellular life activities. Synchrotron-based X-ray microscopy has high spatial resolution and good energy (element) resolution, which has great application potential in the recognition and imaging of intracellular biomolecules. At present, the probes that have been developed for synchrotron-based X-ray microscopy are mainly immunostaining probes and genetic labeling probes. Immunostaining probes are prone to lead to cross-reactions due to their dependence on antigen-antibody reactions. The genetic labeling probes, based on gene coding tags, catalyze the generation of X-ray sensitive polymers. However, the polymers used to provide X-ray imaging signals have no fixed morphology. When it is applied to cell imaging, the positioning accuracy will be reduced due to the diffusion of tags in cells, which is an inherent defect of such imaging tags. In addition, there are few existing systems that can express each other independently and step by step for this type of probe. Therefore, both types of X-ray probes mentioned above are difficult to achieve simultaneous high-resolution imaging observation of multiple biological target molecules in cellular life activities. In this research paper, by using the characteristics of X-ray that has good energy resolution and does not interfere with each other between element spectra, we can synthesize polydopamine (PDA) nanoparticles in a controlled manner, modify azide groups on PDA nanoparticles and chelate metal ions, develop a click chemistry based synchronous X-ray imaging tag (PDA-N3-Metal), and conduct synchrotron radition X-ray imaging on the tag with an imaging resolution of 30 nm. The research results lay a good foundation for further preparation of X-ray probes based on click chemistry, and for realizing the specific recognition and imaging of multiple biological molecules in cells at the same time.

Key words: polydopamine, click chemistry, synchrotron-based X-ray, metal, imaging tag