Review

Research Progress of CO2 Capture and Separation by Functionalized Ionic Liquids and Materials

  • Shaojuan Zeng ,
  • Xueqi Sun ,
  • Yinge Bai ,
  • Lu Bai ,
  • Shuang Zheng ,
  • Xiangping Zhang ,
  • Suojiang Zhang
Expand
  • Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-03-03

  Online published: 2023-04-27

Supported by

National Key R&D Program of China(2022YFB4101701); National Natural Science Foundation of China(22122814); National Natural Science Foundation of China(21890764); Youth Innovation Promotion Association of the Chinese Academy of Sciences(2018064)

Abstract

CO2 emission is a serious global problem. CO2 capture technology is indispensable to achieve the strategic goals of carbon peaking and carbon neutrality in China. Ionic liquids as new media have attracted much attention in the field of CO2 capture and separation due to their unique advantages of low volatility, good gas solubility and structure designability. This review focuses on research progresses of amino and non-amino functionalized ionic liquids, ionic liquid hybrid solvents, ionic liquid modified adsorbents and membranes for CO2 capture and separation reported in the past five years. The influence of amino groups and electronegative functional sites on CO2 separation performance and mechanism, and the role of functionalized ionic liquids in hybrid solvents, adsorbents and membranes were summarized. Finally, the future development direction and prospect of ionic liquid-based CO2 capture technologies were also proposed.

Cite this article

Shaojuan Zeng , Xueqi Sun , Yinge Bai , Lu Bai , Shuang Zheng , Xiangping Zhang , Suojiang Zhang . Research Progress of CO2 Capture and Separation by Functionalized Ionic Liquids and Materials[J]. Acta Chimica Sinica, 2023 , 81(6) : 627 -645 . DOI: 10.6023/A23030063

References

[1]
(a) Mohammad, A.; Kibum, K.; Cong, L.; Addepalli, A. Science 2016, 353, 467.
[1]
(b) Hirunsit, P.; Soodsawang, W.; Limtrakul, J. J. Phys. Chem. C 2015, 119, 8238.
[1]
(c) Alvarez-Guerra, M.; Albo, J.; Alvarez-Guerra, E.; Irabien, A. Energy Environ. Sci. 2015, 8, 2574.
[1]
(d) Rosen, B.; Salehi-Khojin, A.; Thorson, M.; Zhu, W.; Whipple, D.; Kenis, P.; Masel, R. Science 2011, 334, 643.
[2]
(a) Zeng, S.; Dong, H.; Bai, Y.; Zhang, X.; Zhang, S. Green Chem. Eng. 2020, 1, 1.
[2]
(b) Wu, Y.; Xu, J.; Mumford, K.; Stevens, G.; Fei, W.; Wang, Y. Green Chem. Eng. 2020, 1, 16.
[2]
(c) Li, B.; Wang, C.; Zhang, Y.; Wang, Y. Green Energy Environ. 2021, 6, 253.
[3]
(a) Wu, Y.; Ding, Y.; Xu, J.; Wang, Y.; Mumford, K.; Stevens, G.; Fei, W. Green Energy Environ. 2021, 6, 291.
[3]
(b) Liu, Y.; Dai, Z.; Zhang, Z.; Zeng, S.; Li, F.; Zhang, X.; Nie, Y.; Zhang, L.; Zhang, S.; Ji, X. Green Energy Environ. 2021, 6, 314.
[3]
(c) Zhang, S.; He, H.; Zhou, Q.; Zhang, X.; Lu, X.; Tian, Y. Green Chem. Eng. 2022, 3, 1.
[4]
Blanchard, L.; Hancu, D.; Beckman, E.; Brennecke, J. Nature 1999, 399, 28.
[5]
Eleanor, D.; Bates, R.; Ioanna, N.; James, H. J. Am. Chem. Soc. 2002, 124, 926.
[6]
Luo, X.; Guo, Y.; Ding, F.; Zhao, H.; Cui, G.; Li, H.; Wang, C. Angew. Chem., Int. Ed. 2014, 53, 7053.
[7]
Huang, Y.; Cui, G.; Zhao, Y.; Wang, H.; Li, Z.; Dai, S.; Wang, J. Angew. Chem., Int. Ed. 2017, 56, 13293.
[8]
Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H. J. Am. Chem. Soc. 2001, 124, 926.
[9]
Zareiekordshouli, F.; Lashani-zadehgan, A.; Darvishi, P. Int. J. Greenh. Gas Con. 2016, 53, 328.
[10]
Pan, L.; Shi, W.; Li, B.; Wei, X. J. Therm. Sci. 2021, 30, 1780.
[11]
Huang, K.; Zhang, J.; Hu, X.; Wu, Y. Energy Fuels 2017, 31, 14060.
[12]
Zhang, J.; Jia, C.; Dong, H.; Wang, J.; Zhang, X.; Zhang, S. Ind. Eng. Chem. Res. 2013, 52, 5835.
[13]
Simons, T.; Verheyen, T.; Izgorodina, E. I.; Vijayaraghavan, R.; Young, S.; Pearson, A.; Pas, S.; MacFarlane, D. Phys. Chem. Chem. Phys. 2016, 18, 1140.
[14]
Shi, G.; Zhao, H.; Chen, K.; Lin, W.; Li, H.; Wang, C. AIChE J. 2019, 66, 1.
[15]
Tiwari, S.; Pant, K.; Upadhyayula, S. J. CO2 Util. 2021, 45, 101416.
[16]
Gurkan, B.; de la Fuente, J.; Mindrup, E.; Ficke, L.; Goodrich, B.; Price, E.; Schneider, W. F.; Brennecke, J. F. J. Am. Chem. Soc. 2010, 132, 2116.
[17]
Brett, F.; Juan, C.; Burcu, E.; David, J.; Erica, A.; Huang, Y.; Brennecke, J. Ind. Eng. Chem. Res. 2011, 50, 111.
[18]
(a) Luo, X.; Ding, F.; Lin, W.; Qi, Y.; Li, H.; Wang, C. J. Phys. Chem. Lett. 2014, 5, 381.
[18]
(b) Luo, X.; Fan, X.; Shi, G.; Li, H.; Wang, C. J. Phys. Chem. B 2016, 120, 2807.
[19]
(a) Saravanamurugan, S.; Kunov-Kruse, A.; Fehrmann, R.; Riisager, A. ChemSusChem 2014, 7, 897.
[19]
(b) Sistla, Y.; Khanna, A. Chem. Eng. J. 2015, 273, 268.
[19]
(c) Chen, F.; Huang, K.; Zhou, Y.; Tian, Z.; Zhu, X.; Tao, D.; Jiang, D.; Dai, S. CIESC J. 2016, 55, 7166.
[20]
Goodrich, B. F.; de la Fuente, J.; Gurkan, B.; Lopez, Z.; Price, E.; Huang, Y.; Brennecke, J. J. Phys. Chem. B 2011, 115, 9140.
[21]
Firaha, D.; Kirchner, B. ChemSusChem 2016, 9, 1591.
[22]
Yang, Q.; Wang, Z.; Bao, Z.; Zhang, Z.; Yang, Y.; Ren, Q.; Xing, H.; Dai, S. ChemSusChem 2016, 9, 806.
[23]
Rezaeian, M.; Izadyar, M.; Nakhaei Pour, A. J. Phys. Chem. A 2018, 122, 5721.
[24]
Luo, X.; Lv, X.; Shi, G.; Meng, Q.; Li, H. R.; Wang, C. AIChE J. 2019, 65, 230.
[25]
Onofri, S.; Bodo, E. J. Phys. Chem. B 2021, 125, 5611.
[26]
Zhang, Y.; Zhang, S.; Lu, X.; Zhou, Q.; Fan, W.; Zhang, X. Chemistry 2009, 15, 3003.
[27]
Kasahara, S.; Kamio, E.; Shaikh, A. R.; Matsuki, T.; Matsuyama, H. J. Membr. Sci. 2016, 503, 148.
[28]
Shaikh, A.; Karkhanechi, H.; Kamio, E.; Yoshioka, T.; Matsuyama, H. J. Phys. Chem. C 2016, 120, 27734.
[29]
(a) Zhou, X.; Jing, G.; Liu, F.; Lv, B.; Zhou, Z. Energy Fuels 2017, 31, 1793.
[29]
(b) Zhou, Z.; Zhou, X.; Jing, G.; Lv, B. Energy Fuels 2016, 30, 7489.
[30]
Jing, G.; Qian, Y.; Zhou, X.; Lv, B.; Zhou, Z. ACS Sustainable Chem. Eng. 2017, 6, 1182.
[31]
Zeng, S.; Wang, J.; Bai, L.; Wang, B.; Gao, H.; Shang, D.; Zhang, X.; Zhang, S. Energy Fuels 2015, 29, 6039.
[32]
Zhou, L.; Fan, J.; Shang, X.; Wang, J. J. Chem. Thermodyn. 2013, 59, 28.
[33]
(a) Kanakubo, M.; Makino, T.; Taniguchi, T.; Nokami, T.; Itoh, T. ACS Sustainable Chem. Eng. 2016, 4, 525.
[33]
(b) Makino, T.; Kanakubo, M.; Masuda, Y.; Umecky, T.; Suzuki, A. Fluid Phase Equilib. 2014, 362, 300.
[34]
Wang, C.; Luo, H.; Li, H.; Zhu, X.; Yu, B.; Dai, S. Chemistry 2012, 18, 2153.
[35]
Zhao, T.; Zhang, X.; Tu, Z.; Wu, Y.; Hu, X. J. Mol. Liq. 2018, 268, 617.
[36]
Chen, K.; Mei, K.; Li, H.; Wang, C. CIESC J. 2016, 67, 623.
[37]
Lin, W.; Cai, Z.; Lv, X.; Xiao, Q.; Chen, K.; Li, H.; Wang, C. Ind. Eng. Chem. Res. 2019, 58, 16894.
[38]
Wang, C.; Luo, H.; Jiang, D.; Li, H.; Dai, S. Angew. Chem., Int. Ed. 2011, 50, 4918.
[39]
Wang, C.; Luo, H.; Jiang, D.; Li, H.; Dai, S. Angew. Chem., Int. Ed. 2010, 49, 5978.
[40]
Oh, S.; Morales-Collazo, O.; Keller, A. N.; Brennecke, J. F. J. Phys. Chem. B 2020, 124, 8877.
[41]
Seo, S.; DeSilva, M. A.; Brennecke, J. F. J. Phys. Chem. B 2014, 118, 14870.
[42]
Baj, S.; Krawczyk, T.; Dabrowska, A.; Siewniak, A.; Sobolewski, A. Korean J. Chem. Eng. 2015, 32, 2295.
[43]
Mei, K.; He, X.; Chen, K.; Zhou, X.; Li, H.; Wang, C. Ind. Eng. Chem. Res. 2017, 56, 8066.
[44]
Zhang, X.; Xiong, W.; Peng, L.; Wu, Y.; Hu, X. AIChE J. 2020, 66, 103319.
[45]
Huang, Y.; Cui, G.; Wang, H.; Li, Z.; Wang, J. J. CO2 Util. 2018, 28, 299.
[46]
(a) Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou, Z. Chem. Rev. 2017, 117, 6881.
[46]
(b) Nobuoka, K.; Kitaoka, S.; Yamauchi, T.; Harran, T.; Ishikawa, Y. Chem. Lett. 2016, 45, 433.
[46]
(c) Shi, Y.; Xiong, D.; Wang, H.; Zhao, Y.; Wang, J. Langmuir 2016, 32, 6895.
[46]
(d) Fiorentini, E.; Escudero, L.; Wuilloud, R. Anal. Bioanal. Chem. 2018, 410, 4715.
[47]
Lin, W.; Pan, M.; Xiao, Q.; Li, H.; Wang, C. J. Phys. Chem. Lett. 2019, 10, 3346.
[48]
Zhang, F.; Gao, Y.; Wu, X.; Ma, J.; Wu, Y.; Zhang, Z. Chem. Eng. J. 2013, 223, 371.
[49]
Hasib-ur-Rahman, M.; Larachi, F. Environ. Sci. Technol. 2012, 46, 11443.
[50]
(a) Dean, C.; Jason, E.; Douglas, L.; Noble, R. Ind. Eng. Chem. Res. 2008, 47, 8496.
[50]
(b) Ahmady, A.; Hashim, M.; Aroua, M. Chem. Eng. J. 2011, 172, 763.
[50]
(c) Taib, M.; Murugesan, T. Chem. Eng. J. 2012, 181, 56.
[50]
(d) Zhao, Y.; Zhang, X.; Zeng, S.; Zhou, Q.; Dong, H.; Tian, X.; Zhang, S. J. Chem. Eng. Data 2010, 55, 3513.
[50]
(e) Ahmady, A.; Hashim, M.; Aroua, M. Fluid Phase Equilib. 2011, 309, 76.
[50]
(f) Aziz, N.; Yusoff, R.; Aroua, M. Fluid Phase Equilib. 2012, 322, 120.
[50]
(g) Gao, Y.; Zhang, F.; Huang, K.; Ma, J.; Wu, Y.; Zhang, Z. Int. J. Greenh. Gas Con. 2013, 19, 379.
[51]
Romanos, G.; Zubeir, L.; Likodimos, V.; Falaras, P.; Kroon, M.; Iliev, B.; Adamova, G.; Schubert, T. J. Phys. Chem. B 2013, 117, 12234.
[52]
Aparicio, S.; Atilhan, M. Chem. Phys. 2012, 400, 118.
[53]
Li, T.; Chen, B.; Piao, X. CIESC J. 2013, 64, 600. (in Chinese)
[53]
(李天成, 陈郴, 朴香兰, 化工学报, 2013, 64, 600.)
[54]
Zhang, Y.; Yu, P.; Luo, Y. Chem. Eng. J. 2013, 214, 355.
[55]
Simon, N.; Zanatta, M.; Dos Santos, F.; Corvo, M.; Cabrita, E.; Dupont, J. ChemSusChem 2017, 10, 4927.
[56]
Zheng, W.; Zhang, F.; Wu, Y.; Hu, X. J. Mol. Liq. 2017, 243, 169.
[57]
Li, F.; Bai, Y.; Zeng, S.; Liang, X.; Wang, H.; Huo, F.; Zhang, X. Int. J. Greenh. Gas Con. 2019, 90, 102801.
[58]
Wei, L.; Guo, R.; Tang, Y.; Zhu, J.; Liu, M.; Chen, J.; Xu, Y. Sep. Purif. Technol. 2020, 239, 116531.
[59]
Shohrat, A.; Zhang, M.; Hu, H.; Yang, X.; Liu, L.; Huang, H. Int. J. Greenh. Gas Con. 2022, 119, 103709.
[60]
Li, W.; Wen, S.; Shen, L.; Zhang, Y.; Sun, C.; Li, S. Energy Fuels 2018, 32, 10813.
[61]
Wang, K.; Li, T.; Li, Y.; Bai, Y.; Zeng, S.; Ren, B.; Zhang, X.; Dong, H. Chin. J. Proc. Eng. 2022, https://kns.cnki.net/kcms/detail/11.4541.TQ.20220622.1123.004.html in Chinese)
[61]
(王凯旋, 李涛, 李玉, 白银鸽, 曾少娟, 任保增, 张香平, 董海峰, 过程工程学报, 2022, https://kns.cnki.net/kcms/detail/11.4541.TQ.20220622.1123.004.html
[62]
Ma, D.; Zhu, C.; Fu, T.; Ma, Y.; Yuan, X. Chem. Eng. J. 2021, 417, 129302.
[63]
Zheng, W.; Huang, K.; Wu, Y.; Hu, X. AIChE J. 2018, 64, 209.
[64]
(a) Sun, X.; Waters, K. ACS Sustainable Chem. Eng. 2014, 2, 1910.
[64]
(b) Zhang, Z.; Hu, S.; Song, J.; Li, W.; Yang, G.; Han, B. ChemSusChem 2009, 2, 234.
[65]
Xiao, M.; Liu, H.; Gao, H.; Olson, W.; Liang, Z. Appl. Energ. 2019, 235, 311.
[66]
Zhang, J.; Peng, H.; Liu, Y.; Tao, D.; Wu, P.; Fan, J.; Huang, K. ACS Sustainable Chem. Eng. 2019, 7, 9369.
[67]
Li, C.; Zhao, T.; Yang, A.; Liu, F. ACS Omega 2021, 6, 34027.
[68]
Li, J.; Dai, Z.; Usman, M.; Qi, Z.; Deng, L. Int. J. Greenh. Gas Con. 2016, 45, 207.
[69]
Liu, F.; Shen, Y.; Shen, L.; Zhang, Y.; Chen, W.; Wang, Q.; Li, S.; Zhang, S.; Li, W. Sep. Purif. Technol. 2021, 275, 119123.
[70]
Li, F.; Zeng, S.; Bai, Y.; Dong, H.; Wang, H.; Ji, X.; Zhang, X. Energy Fuels 2020, 34, 8526.
[71]
Shaahmadi, F.; Hashemi Shahraki, B.; Farhadi, A. J. Chem. Eng. Data 2019, 64, 584.
[72]
Wu, G.; Liu, Y.; Liu, G.; Pang, X. Molecules 2020, 25, 1.
[73]
Cui, G.; Lv, M.; Yang, D. Chem. Commun. 2019, 55, 1426.
[74]
Yan, H.; Zhao, L.; Bai, Y.; Li, F.; Dong, H.; Wang, H.; Zhang, X.; Zeng, S. ACS Sustainable Chem. Eng. 2020, 8, 2523.
[75]
Cheng, J.; Wu, C.; Gao, W.; Li, H.; Ma, Y.; Liu, S.; Yang, D. Int. J. Mol. Sci. 2022, 23, 1893.
[76]
Haider, M.; Kumar, R. Sep. Purif. Technol. 2020, 248, 117055.
[77]
Zhang, N.; Huang, Z.; Zhang, H.; Ma, J.; Jiang, B.; Zhang, L. Ind. Eng. Chem. Res. 2019, 58, 13321.
[78]
Lian, S.; Song, C.; Liu, Q.; Duan, E.; Ren, H.; Kitamura, Y. J. Environ. Sci. 2021, 99, 281.
[79]
Xu, M.; Wang, S. CIESC J. 2018, 69, 1. (in Chinese)
[79]
(许咪咪, 王淑娟, 化工学报, 2018, 69, 1.)
[80]
Chen, Y.; Hu, H. Energy Fuels 2017, 31, 5363.
[81]
Huang, Q.; Jing, G.; Zhou, X.; Lv, B.; Zhou, Z. J. CO2 Util. 2018, 25, 22.
[82]
Jiang, W.; Wu, F.; Gao, G.; Li, X.; Zhang, L.; Luo, C. Chem. Eng. J. 2021, 420, 129897.
[83]
Seo, S.; Simoni, L. D.; Ma, M.; DeSilva, M.; Huang, Y.; Stadtherr, M.; Brennecke, J. Energy Fuels 2014, 28, 5968.
[84]
Han, G.; Yu, N.; Liu, D.; Yu, G.; Chen, X.; Zhong, C. AIChE J. 2020, 67, 1.
[85]
Zhang, W.; Gao, E.; Li, Y.; Bernards, M. T.; He, Y.; Shi, Y. J. CO2 Util. 2019, 34, 606.
[86]
Mohamedali, M.; Ibrahim, H.; Henni, A. Chem. Eng. J. 2018, 334, 817.
[87]
Karousos, D.; Vangeli, O.; Athanasekou, C.; Sapalidis, A.; Kouvelos, E.; Romanos, G.; Kanellopoulos, N. Chem. Eng. J. 2016, 306, 146.
[88]
Reed, D.; Dowson, G.; Styring, P. Front. Energy Res. 2017, 5, 1.
[89]
Raja Shahrom, M.; Nordin, A.; Wilfred, C. J. Environ. Chem. Eng. 2019, 7, 103319.
[90]
Zheng, S.; Zeng, S.; Li, G.; Yao, X.; Li, Z.; Zhang, X. Chem. Eng. J. 2023, 451, 138736.
[91]
(a) Erto, A.; Silvestre-Albero, A.; Silvestre-Albero, J.; Rodriguez- Reinoso, F.; Balsamo, M.; Lancia, A.; Montagnaro, F. J. Colloid Interf. Sci. 2015, 448, 41.
[91]
(b) Xu, W.; Zhang, J.; Cheng, N.; Li, Z.; Lan, H.; Jiang, W.; Huang, K.; Peng, H.; Du, J. J. Taiwan Inst. Chem. Eng. 2021, 125, 115.
[91]
(c) Huang, Z.; Karami, D.; Mahinpey, N. Chem. Eng. Res. Des. 2021, 167, 198.
[91]
(d) Hiremath, V.; Jadhav, A.; Lee, H.; Kwon, S.; Seo, J. Chem. Eng. J. 2016, 287, 602.
[92]
Yuan, J.; Fan, M.; Zhang, F.; Xu, Y.; Tang, H.; Huang, C.; Zhang, H. Chem. Eng. J. 2017, 316, 903.
[93]
Sun, L.; Yin, M.; Tang, S. J. Environ. Chem. Eng. 2021, 9, 105829.
[94]
He, X.; Mei, K.; Dao, R.; Cai, J.; Lin, W.; Kong, X.; Wang, C. AIChE J. 2017, 63, 3008.
[95]
Santiago, R.; Lemus, J.; Moya, C.; Moreno, D.; Alonso-Morales, N.; Palomar, J. ACS Sustainable Chem. Eng. 2018, 6, 14178.
[96]
Mohamedali, M.; Ibrahim, H.; Henni, A. Microporous Mesoporous Mater. 2020, 294, 109916.
[97]
Lee, Y.; Edgehouse, K.; Klemm, A.; Mao, H.; Pentzer, E.; Gurkan, B. ACS Appl. Mater. Inter. 2020, 12, 19184.
[98]
Zhao, X.; Yuan, Y.; Li, P.; Song, Z.; Ma, C.; Pan, D.; Wu, S.; Ding, T.; Guo, Z.; Wang, N. Chem. Commun. 2019, 55, 13179.
[99]
(a) Friess, K.; Izak, P.; Karaszova, M.; Pasichnyk, M.; Lanc, M.; Nikolaeva, D.; Luis, P.; Jansen, J. Membranes 2021, 11, 1.
[99]
(b) Shafie, S.; Md Nordin, N.; Racha, S.; Bilad, M.; Othman, M.; Misdan, N.; Jaafar, J.; Putra, Z.; Wirzal, M. J. Mol. Liq. 2022, 358, 119192.
[100]
Gao, H.; Bai, L.; Han, J.; Yang, B.; Zhang, S.; Zhang, X. Chem. Commun. 2018, 54, 12671.
[101]
Dai, Z.; Bai, L.; Hval, K. N.; Zhang, X.; Zhang, S.; Deng, L. Sci. China: Chem. 2016, 59, 538.
[102]
Moghadam, F.; Kamio, E.; Matsuyama, H. J. Membr. Sci. 2017, 525, 290.
[103]
Jiang, H.; Bai, L.; Yang, B.; Zeng, S.; Dong, H.; Zhang, X. Chin. J. Chem. Eng. 2022, 43, 169.
[104]
Pishva, S.; Hassanajili, S. J. Ind. Eng. Chem. 2022, 107, 180.
[105]
Ahmad, N.; Leo, C.; Mohammad, A.; Shaari, N.; Ang, W. Int. J. Energ. Res. 2021, 45, 9800.
[106]
Han, J.; Bai, L.; Jiang, H.; Zeng, S.; Yang, B.; Bai, Y.; Zhang, X. Ind. Eng. Chem. Res. 2020, 60, 593.
[107]
Hu, L.; Cheng, J.; Li, Y.; Liu, J.; Zhang, L.; Zhou, J.; Cen, K. Appl. Surf. Sci. 2017, 410, 249.
[108]
Ilyas, A.; Muhammad, N.; Gilani, M.; Vankelecom, I.; Khan, A. Sep. Purif. Technol. 2018, 205, 176.
[109]
Ma, J.; Ying, Y.; Guo, X.; Huang, H.; Liu, D.; Zhong, C. J. Mater. Chem. A 2016, 4, 7281.
Outlines

/