Review

Poly-adenine-based DNA Probes and Their Applications in Biosensors

  • Lanying Li ,
  • Qing Tao ,
  • Yanli Wen ,
  • Lele Wang ,
  • Ruiyan Guo ,
  • Gang Liu ,
  • Xiaolei Zuo
Expand
  • a Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
    b Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-08

  Online published: 2023-06-01

Supported by

National Quality Infrastructure Program of China(2021YFF0600705); National Natural Science Foundation of China(22074093); Shanghai Sailing Program(21YF1459500)

Abstract

Compared to traditional thiolated DNA probes, poly-adenine-based DNA probes (polyA DNA probes) are free of special chemical modifications, and thus exhibit unique advantages of easy synthesis, low economic cost, and excellent stability. Using their intrinsic polyA fragments, polyA DNA probes are combined onto the gold surface to form a compact and ordered monolayer with both anchoring and recognition capabilities. As a result, polyA DNA probes have attracted numerous research interests in biosensing. In this review, we first presented the mechanism of interaction between polyA DNA probes and the gold surface and then reviewed the applications of the polyA DNA probes in the development of biosensors, including colorimetric biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS) biosensors, and electrochemical biosensors. We concluded with a discussion of the opportunities and challenges for polyA DNA probes and expected this review to be informative for the development of biosensors in food safety, environmental monitoring, and biomedicine.

Cite this article

Lanying Li , Qing Tao , Yanli Wen , Lele Wang , Ruiyan Guo , Gang Liu , Xiaolei Zuo . Poly-adenine-based DNA Probes and Their Applications in Biosensors[J]. Acta Chimica Sinica, 2023 , 81(6) : 681 -690 . DOI: 10.6023/A23040121

References

[1]
Chi, J.; Li, J.; Ren, S.; Su, S.; Wang, L. Acta Chim. Sinica 2019, 77, 1230. (in Chinese)
[1]
(迟景元, 李晶, 任少康, 苏邵, 汪联辉, 化学学报, 2019, 77, 1230.)
[2]
Yin, F.; Zhao, H.; Lu, S.; Shen, J.; Li, M.; Mao, X.; Li, F.; Shi, J.; Li, J.; Dong, B.; Xue, W.; Zuo, X.; Yang, X.; Fan, C. Nat. Nanotechnol. 2023, https://doi.org/10.1038/s41565-023-01348-9.
[3]
Li, F.; Li, J.; Dong, B.; Wang, F.; Fan, C.; Zuo, X. Chem. Soc. Rev. 2021, 50, 5650.
[4]
Zhang, Y.; Mao, X.; Li, F.; Li, M.; Jing, X.; Ge, Z.; Wang, L.; Liu, K.; Zhang, H.; Fan, C.; Zuo, X. Angew. Chem. Int. Ed. 2020, 59, 4892.
[5]
Li, F.; Mao, X.; Li, F.; Li, M.; Shen, J.; Ge, Z.; Fan, C.; Zuo, X. J. Am. Chem. Soc. 2020, 142, 9975.
[6]
Li, L.; Wang, L.; Xu, Q.; Xu, L.; Liang, W.; Li, Y.; Ding, M.; Aldalbahi, A.; Ge, Z.; Wang, L.; Yan, J.; Lu, N.; Li, J.; Wen, Y.; Liu, G. ACS Appl. Mater. Interfaces 2018, 10, 6895.
[7]
Lao, R.; Song, S.; Wu, H.; Wang, L.; Zhang, Z.; He, L.; Fan, C. Anal. Chem. 2005, 77, 6475.
[8]
Lu, N.; Pei, H.; Ge, Z.; Simmons, C. R.; Yan, H.; Fan, C. J. Am. Chem. Soc. 2012, 134, 13148.
[9]
Chen, P.; Pan, D.; Fan, C.; Chen, J.; Huang, K.; Wang, D.; Zhang, H.; Li, Y.; Feng, G.; Liang, P.; He, L.; Shi, Y. Nat. Nanotechnol. 2011, 6, 639.
[10]
Liu, G.; Lao, R.; Xu, L.; Xu, Q.; Li, L.; Zhang, M.; Shen, H.; Mathur, S.; Fan, C.; Song, S. Sensors-basel 2011, 11, 8018.
[11]
Fan, C.; Plaxco, K. W.; Heeger, A. J. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9134.
[12]
Song, P.; Shen, J.; Ye, D.; Dong, B.; Wang, F.; Pei, H.; Wang, J.; Shi, J.; Wang, L.; Xue, W.; Huang, Y.; Huang, G.; Zuo, X.; Fan, C. Nat. Commun. 2020, 11, 838.
[13]
Zhang, J.; Wang, L.; Pan, D.; Song, S.; Fan, C. Chem. Commun. (Camb.) 2007, 1154.
[14]
Ye, D.; Zuo, X.; Fan, C. Annu. Rev. Anal. Chem. 2018, 11, 171.
[15]
Liu, G.; Wan, Y.; Gau, V.; Zhang, J.; Wang, L.; Song, S.; Fan, C. J. Am. Chem. Soc. 2008, 130, 6820.
[16]
Wen, Y.; Pei, H.; Shen, Y.; Xi, J.; Lin, M.; Lu, N.; Shen, X.; Li, J.; Fan, C. Sci. Rep. 2012, 2, 867.
[17]
Wen, Y.; Wang, L.; Xu, L.; Li, L.; Ren, S.; Cao, C.; Jia, N.; Aldalbahi, A.; Song, S.; Shi, J.; Xia, J.; Liu, G.; Zuo, X. Analyst 2016, 141, 5304.
[18]
Lin, M.; Wen, Y.; Li, L.; Pei, H.; Liu, G.; Song, H.; Zuo, X.; Fan, C.; Huang, Q. Anal. Chem. 2014, 86, 2285.
[19]
Wen, Y.; Liu, G.; Pei, H.; Li, L.; Xu, Q.; Liang, W.; Li, Y.; Xu, L.; Ren, S.; Fan, C. Methods 2013, 64, 276.
[20]
Wen, Y.; Pei, H.; Wan, Y.; Su, Y.; Huang, Q.; Song, S.; Fan, C. Anal. Chem. 2011, 83, 7418.
[21]
Pei, H.; Li, F.; Wan, Y.; Wei, M.; Liu, H.; Su, Y.; Chen, N.; Huang, Q.; Fan, C. J. Am. Chem. Soc. 2012, 134, 11876.
[22]
Schreiner, S. M.; Hatch, A. L.; Shudy, D. F.; Howard, D. R.; Howell, C.; Zhao, J.; Koelsch, P.; Zharnikov, M.; Petrovykh, D. Y.; Opdahl, A. Anal. Chem. 2011, 83, 4288.
[23]
Schreiner, S. M.; Shudy, D. F.; Hatch, A. L.; Opdahl, A.; Whitman, L. J.; Petrovykh, D. Y. Anal. Chem. 2010, 82, 2803.
[24]
Opdahl, A.; Petrovykh, D. Y.; Kimura-Suda, H.; Tarlov, M. J.; Whitman, L. J. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 9.
[25]
Jang, N. H. B. Korean Chem. Soc. 2002, 23, 1790.
[26]
Koo, K. M.; Sina, A. A. I.; Carrascosa, L. G.; Shiddiky, M. J. A.; Trau, M. Anal. Methods 2015, 7, 7042.
[27]
Kimura-Suda, H.; Petrovykh, D. Y.; Tarlov, M. J.; Whitman, L. J. J. Am. Chem. Soc. 2003, 125, 9014.
[28]
Opdahl, A.; Petrovykh, D. Y.; Kimura-Suda, H.; Tarlov, M. J.; Whitman, L. J. PNAS 2007, 104, 9.
[29]
Liu, P.; Wang, D.; Zhou, Y.; Wang, H.; Yin, H.; Ai, S. Biosens. Bioelectron. 2016, 80, 74.
[30]
Wang, L.; Zhang, H.; Wang, C.; Xu, Y.; Su, J.; Wang, X.; Liu, X.; Feng, D.; Wang, L.; Zuo, X.; Shi, J.; Ge, Z.; Fan, C.; Mi, X. Biosens. Bioelectron. 2019, 127, 85.
[31]
Zhu, Y.; Jiang, X.; Wang, H.; Wang, S.; Wang, H.; Sun, B.; Su, Y.; He, Y. Anal. Chem. 2015, 87, 6631.
[32]
Li, W.; Li, J.; Qiang, W.; Xu, J.; Xu, D. Analyst 2013, 138, 760.
[33]
Ou, L. J.; Jin, P. Y.; Chu, X.; Jiang, J. H.; Yu, R. Q. Anal. Chem. 2010, 82, 6015.
[34]
Yang, H.; Xiao, M.; Lai, W.; Wan, Y.; Li, L.; Pei, H. Anal. Chem. 2020, 92, 4990.
[35]
Zhang, Y.; Jiao, J.; Wei, Y.; Wang, D.; Yang, C.; Xu, Z. Anal. Chem. 2020, 92, 15244.
[36]
Cai, Y.; Zhu, H.; Zhou, W.; Qiu, Z.; Chen, C.; Qileng, A.; Li, K.; Liu, Y. Anal. Chem. 2021, 93, 7275.
[37]
Yao, G.; Pei, H.; Li, J.; Zhao, Y.; Zhu, D.; Zhang, Y.; Lin, Y.; Huang, Q.; Fan, C. NPG Asia Materials 2015, 7, e159.
[38]
Lu, W.; Wang, L.; Li, J.; Zhao, Y.; Zhou, Z.; Shi, J.; Zuo, X.; Pan, D. Sci. Rep. 2015, 5, 10158.
[39]
Nourisaeid, E.; Mousavi, A.; Arpanaei, A. Physica E 2016, 75, 188.
[40]
Xie, Y.; Huang, Y.; Tang, D.; Cui, H.; Cao, H. Mikrochim. Acta 2018, 185, 534.
[41]
Yin, J.; Wang, J.; Yang, X.; Wu, T.; Wang, H.; Zhou, X. RSC Adv. 2019, 9, 18728.
[42]
Chen, X.; Wang, Y.; Dai, X.; Ding, L.; Chen, J.; Yao, G.; Liu, X.; Luo, S.; Shi, J.; Wang, L.; Nechushtai, R.; Pikarsky, E.; Willner, I.; Fan, C.; Li, J. J. Am. Chem. Soc. 2022, 144, 6311.
[43]
Zhang, Z.; Ma, J.; Zhang, G.; Ding, X.; Zhang, R.; Zhou, T.; Wang, X.; Wang, F. Langmuir 2020, 36, 10989.
[44]
Wu, Z.; Ke, J.; Liu, Y.; Sun, P.; Hong, M. Acta Chim. Sinica 2022, 80, 542. (in Chinese)
[44]
(吴志芬, 柯建熙, 刘永升, 孙蓬明, 洪茂椿, 化学学报, 2022, 80, 542.)
[45]
Zhao, L.-D.; Zuo, P.; Yin, B.-C.; Hong, C.-L.; Ye, B.-C. Acta Chim. Sinica 2020, 78, 1076. (in Chinese)
[45]
(赵丽东, 左鹏, 尹斌成, 洪成林, 叶邦策, 化学学报, 2020, 78, 1076.)
[46]
Huang, Y.; Yang, H. Y.; Ai, Y. Anal. Chem. 2015, 87, 9132.
[47]
Zhang, P.; Chang, L.; Niu, C.; Wang, X.; Li, Z.; Liu, J. ACS Appl. Polym. 2022, 4, 6211.
[48]
Chen, L.; Chao, J.; Qu, X.; Zhang, H.; Zhu, D.; Su, S.; Aldalbahi, A.; Wang, L.; Pei, H. ACS Appl. Mater. Interfaces 2017, 9, 8014.
[49]
Ye, T.; Zhu, D.; Hao, L.; Yuan, M.; Cao, H.; Wu, X.; Yin, F.; Xu, F. Mikrochim. Acta 2022, 189, 151.
[50]
Zhu, D.; Pei, H.; Chao, J.; Su, S.; Aldalbahi, A.; Rahaman, M.; Wang, L.; Wang, L.; Huang, W.; Fan, C.; Zuo, X. Nanoscale 2015, 7, 18671.
[51]
Zhu, D.; Zhao, D.; Huang, J.; Zhu, Y.; Chao, J.; Su, S.; Li, J.; Wang, L.; Shi, J.; Zuo, X.; Weng, L.; Li, Q.; Wang, L. Nanomedicine 2018, 14, 1797.
[52]
Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Nano Lett. 2009, 9, 3258.
[53]
Liu, M.; Li, Q.; Liang, L.; Li, J.; Wang, K.; Li, J.; Lv, M.; Chen, N.; Song, H.; Lee, J.; Shi, J.; Wang, L.; Lal, R.; Fan, C. Nat. Commun. 2017, 8, 15646.
[54]
Qian, Q.; He, G.; Wang, C.; Li, S.; Zhao, X.; Xu, Y.; Mi, X. Mol. Biol. Rep. 2022, 49, 3705.
[55]
Jiao, K.; Yan, Q.; Guo, L.; Qu, Z.; Cao, S.; Chen, X.; Li, Q.; Zhu, Y.; Li, J.; Wang, L.; Fan, C.; Wang, F. Angew. Chem. Int. Ed. 2021, 60, 14438.
[56]
Wang, S.; Zhang, H.; Li, W.; Birech, Z.; Ma, L.; Li, D.; Li, S.; Wang, L.; Shang, J.; Hu, J. Mikrochim. Acta 2019, 187, 20.
[57]
Chen, Q.; Tian, R.; Liu, G.; Wen, Y.; Bian, X.; Luan, D.; Wang, H.; Lai, K.; Yan, J. Biosens. Bioelectron. 2022, 207, 114187.
[58]
Zhou, Y.; Fang, W.; Lai, K.; Zhu, Y.; Bian, X.; Shen, J.; Li, Q.; Wang, L.; Zhang, W.; Yan, J. Biosens. Bioelectron. 2019, 141, 111419.
[59]
Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Nat. Nanotechnol. 2011, 6, 452.
[60]
Zhao, B.; Shen, J.; Chen, S.; Wang, D.; Li, F.; Mathur, S.; Song, S.; Fan, C. Chem. Sci. 2014, 5, 4460.
[61]
Zhu, Y.; Jiang, X.; Wang, H.; Wang, S.; Wang, H.; Sun, B.; Su, Y.; He, Y. Anal. Chem. 2015, 87, 6631.
[62]
Wang, H.; Halas, N. J. Adv. Mater. 2008, 20, 820.
[63]
Guo, J.; Chen, Y.; Jiang, Y.; Ju, H. Chem. Eur. J. 2017, 23, 9332.
[64]
Zhou, X.; Sun, Z.; Su, X.; Zheng, K.; Zou, X.; Zhang, W. Anal. Chem. 2023, 95, 1916.
[65]
Khodadoust, A.; Nasirizadeh, N.; Taheri, R. A.; Dehghani, M.; Ghanei, M.; Bagheri, H. Mikrochim. Acta 2022, 189, 213.
[66]
Wang, M.; Cui, H.; Hong, N.; Shu, Q.; Wang, X.; Hu, Y.; Wei, G.; Fan, H.; Zhang, J. Sens. Actuators B Chem. 2022, 358.
[67]
Koo, K. M.; Carrascosa, L. G.; Shiddiky, M. J.; Trau, M. Anal. Chem. 2016, 88, 2000.
[68]
Wang, Q.; Weng, Y.; Liang, W.; Li, Y.; Wu, J.; Zhu, H.; Zhao, K.; Zhang, J.; Jia, N.; Deng, W.; Liu, G. Anal. Chem. 2019, 91, 9277.
[69]
Wang, L.; Wen, Y.; Yang, X.; Xu, L.; Liang, W.; Zhu, Y.; Wang, L.; Li, Y.; Li, Y.; Ding, M.; Ren, S.; Yang, Z.; Lv, M.; Zhang, J.; Ma, K.; Liu, G. Anal. Chem. 2019, 91, 16002.
Outlines

/