Application Progress of Emerging Janus Particles for Oil-Water Separation★
Received date: 2023-05-05
Online published: 2023-07-04
Supported by
The National Key R&D Program of China(2022YFA1206900); The National Key R&D Program of China(2019YFA0709300); National Natural Science Foundation of China(22035008); Key Research Program of the Chinese Academy of Sciences(XDPB24); International Partnership Program of Chinese Academy of Sciences(1A1111KYSB20200010)
Janus particles are micro-nano materials with anisotropic surface chemical properties, exhibiting unique advantages in emulsion stabilization, interfacial adsorption, and selective wetting. The high interfacial activity of Janus particles makes them widely used in oil-water separation research and shows broad application prospects in environmental protection and other fields. In this perspective, we summarize the research progress of emerging Janus particles in preparation, properties, and oil-water separation applications in recent years. We focus on discussing the influence of different preparation strategies and morphologies of Janus particles on their interfacial properties, summarize the mechanism of particle assembly and aggregation at interface, and introduce various Janus particles with reversible responsive properties. Finally, we prospect the challenges and future development directions of Janus particles in oil-water separation, such as green synthesis, large-scale preparation, in-depth mechanism research, and applications in aspects such as micro-oil droplet removal, crude oil treatment, and controllable responsive separation.
Duanda Wang , Xinyi Shen , Yongyang Song , Shutao Wang . Application Progress of Emerging Janus Particles for Oil-Water Separation★[J]. Acta Chimica Sinica, 2023 , 81(9) : 1187 -1195 . DOI: 10.6023/A23050204
| [1] | Casagrande, C.; Fabre, P.; Raphael, E.; Veyssie, M. Europhys. Lett. 1989, 9, 251. |
| [2] | de Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645. |
| [3] | Walther, A.; Mueller, A. H. E. Soft Matter 2008, 4, 663. |
| [4] | McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J. Nano Lett. 2010, 10, 603. |
| [5] | Zarzar, L. D.; Sresht, V.; Sletten, E. M.; Kalow, J. A.; Blankschtein, D.; Swager, T. M. Nature 2015, 518, 520. |
| [6] | Zong, Y.; Liu, J.; Liu, R.; Guo, H.; Yang, M.; Li, Z.; Chen, K. ACS Nano 2015, 9, 10844. |
| [7] | Walther, A.; Hoffmann, M.; Mueller, A. H. E. Angew. Chem. Int. Ed. 2008, 47, 711. |
| [8] | Liang, F. X.; Liu, B.; Cao, Z.; Yang, Z. Z. Langmuir 2018, 34, 4123. |
| [9] | Chevalier, Y.; Bolzinger, M.-A. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 23. |
| [10] | Boeker, A.; He, J.; Emrick, T.; Russell, T. P. Soft Matter 2007, 3, 1231. |
| [11] | He, X.; Liang, C.; Liu, Q. X.; Xu, Z. H. Chem. Eng. J. 2019, 378, 122045. |
| [12] | He, X.; Liu, Q. X.; Xu, Z. H. J. Colloid Interface Sci. 2020, 568, 207. |
| [13] | He, X.; Liu, Q. X.; Xu, Z. H. Chem. Eng. Sci. 2021, 230, 166215. |
| [14] | Yang, F.; He, X.; Tan, W.; Liu, G.; Yi, T. T.; Lu, Q. Y.; Wei, X. T.; Xie, H. J.; Long, Q. R.; Wang, G. C.; Guo, C. F.; Pensini, E.; Lu, Z. G.; Liu, Q. X.; Xu, Z. H. J. Colloid Interface Sci. 2022, 607, 1741. |
| [15] | Hou, Y.; Li, Y.; Wang, L.; Chen, D.; Bao, M.; Wang, Z. J. Colloid Interface Sci. 2019, 556, 54. |
| [16] | Wu, W. X.; Zhu, G. M.; Wang, B. F.; Qu, T.; Gao, M.; Zhu, Y. L.; Yan, J. Y.; Li, G. L.; Zhang, H. L.; Nie, L. H. J. Water Process Eng. 2022, 49, 103148. |
| [17] | Wu, H.; Yi, W.; Chen, Z.; Wang, H.; Du, Q. Carbon 2015, 93, 473. |
| [18] | Contreras Ortiz, S. N.; Cabanzo, R.; Mejia-Ospino, E. Fuel 2019, 240, 162. |
| [19] | Xu, Y. B.; Wang, Y. F.; Wang, T. Y.; Zhang, L. Y.; Xu, M. M.; Jia, H. Molecules 2022, 27, 2191. |
| [20] | Liang, F.; Shen, K.; Qu, X.; Zhang, C.; Wang, Q.; Li, J.; Liu, J.; Yang, Z. Angew. Chem. Int. Ed. 2011, 50, 2379. |
| [21] | Yu, H.; Zheng, Z.; Hu, B. T.; Ye, Z. F.; Zhu, X. M.; Zhao, Y. L.; Wang, H. T. J. Colloid Interface Sci. 2022, 606, 1554. |
| [22] | Hwang, Y. H.; Jeon, K.; Ryu, S. A.; Kim, D. P.; Lee, H. Small 2020, 16, 2005159. |
| [23] | Yao, X.; Jing, J.; Liang, F.; Yang, Z. Macromolecules 2016, 49, 9618. |
| [24] | Song, Y.; Zhou, J.; Fan, J.-B.; Zhai, W.; Meng, J.; Wang, S. Adv. Funct. Mater. 2018, 28, 1802493. |
| [25] | Qi, X.; Du, Y. X.; Zhang, Z. Q.; Zhang, X. Nanomaterials 2023, 13, 455. |
| [26] | Ali, N.; Zhang, B. L.; Zhang, H. P.; Li, W.; Zaman, W.; Tian, L.; Zhang, Q. Y. Fuel 2015, 141, 258. |
| [27] | Zaman, H.; Ali, N.; Shah, A. U. A.; Gao, X. Y.; Zhang, S. Z.; Hong, K.; Bilal, M. J. Mol. Liq. 2019, 290, 111186. |
| [28] | Liang, F. X.; Liu, J. G.; Zhang, C. L.; Qu, X. Z.; Li, J. L.; Yang, Z. Z. Chem. Commun. 2011, 47, 1231. |
| [29] | Chen, Y.; Yang, H. L.; Zhang, C. L.; Wang, Q.; Qu, X. Z.; Li, J. L.; Liang, F. X.; Yang, Z. Z. Macromolecules 2013, 46, 4126. |
| [30] | Zhao, L. L.; Zhu, L. J.; Chen, Y.; Wang, Q.; Li, J. L.; Zhang, C. L.; Liang, F. X.; Qu, X. Z.; Yang, Z. Z. Chem. Commun. 2013, 49, 6161. |
| [31] | Zhang, H.; Wang, Q.; Jiang, B. Y.; Liang, F. X.; Yang, Z. Z. ACS Appl. Mater. Interfaces 2016, 8, 33250. |
| [32] | Zhang, L. L.; Shi, S. Y.; Zhang, G. L.; Song, X. M.; Sun, D. Y.; Liang, F. X.; Yang, Z. Z. Chem. Commun. 2020, 56, 10497. |
| [33] | Thangavelu, K.; Aubry, C.; Zou, L. D. Ind. Eng. Chem. Res. 2021, 60, 1266. |
| [34] | Mou, F.; Pan, D.; Chen, C.; Gao, Y.; Xu, L.; Guan, J. Adv. Funct. Mater. 2015, 25, 6173. |
| [35] | Pan, D.; Mou, F. Z.; Li, X. F.; Deng, Z. Y.; Sun, J.; Xu, L. L.; Guan, J. G. J. Mater. Chem. A 2016, 4, 11768. |
| [36] | Bao, Y.; Chang, J. X.; Zhang, Y. X.; Chen, L. Chem. Eng. J. 2022, 446, 136959. |
| [37] | Zhao, R.; Han, T.; Sun, D.; Shan, D.; Liu, Z.; Liang, F. Acta Chim. Sinica 2020, 78, 954. (in Chinese) |
| [37] | (赵若彤, 韩天昊, 孙大吟, 山丹, 刘正平, 梁福鑫, 化学学报, 2020, 78, 954.) |
| [38] | Ren, M.; Guo, W. L.; Guo, H. S.; Ren, X. H. ACS Appl. Mater. Interfaces 2019, 11, 22761. |
| [39] | Pickering, S. U. J. Chem. Soc. 1907, 91, 2001. |
| [40] | Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 8622. |
| [41] | Binks, B. P. Curr. Opin. Colloid In. 2002, 7, 21. |
| [42] | Pieranski, P. Phys. Rev. Lett. 1980, 45, 569. |
| [43] | Binks, B. P.; Fletcher, P. D. I. Langmuir 2001, 17, 4708. |
| [44] | Ruhland, T. M.; Groeschel, A. H.; Ballard, N.; Skelhon, T. S.; Walther, A.; Mueller, A. H. E.; Bon, S. A. F. Langmuir 2013, 29, 1388. |
| [45] | Park, B. J.; Lee, D. ACS Nano 2012, 6, 782. |
| [46] | Tu, F. Q.; Lee, D. J. Am. Chem. Soc. 2014, 136, 9999. |
| [47] | Zhai, W.; Li, T.; He, Y.-F.; Xiong, Y.; Wang, R.-M. RSC Adv. 2015, 5, 76211. |
| [48] | Tanaka, T.; Okayama, M.; Minami, H.; Okubo, M. Langmuir 2010, 26, 11732. |
/
| 〈 |
|
〉 |