Review

Research Progress on the Design, Preparation and Properties of Catalysts for CO2 Hydrogenation to Alcohols

  • Guoqing Cui ,
  • Yiyang Hu ,
  • Yingjie Lou ,
  • Mingxia Zhou ,
  • Yuming Li ,
  • Yajun Wang ,
  • Guiyuan Jiang ,
  • Chunming Xu
Expand
  • State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249
† These authors contributed equally to this work.

Received date: 2023-04-10

  Online published: 2023-07-07

Supported by

National Natural Science Foundation of China(22109177); Fundamental Research Funds for the Central Universities(2462020BJRC008)

Abstract

CO2, as one of the most important renewable C1 resource and oxygen resource, has the advantages of abundant reserves, low price, safe and non-toxic, etc. CO2 can be converted into high-value chemicals and fuels such as alcohols with the help of the heterogeneous thermal-catalytic technologies, which have attracted widespread attention and developed rapidly in both academic research and industrial applications. In particular, the design and preparation of the catalysts with satisfactory catalytic CO2 hydrogenation performance (high activity, selectivity and stability) at mild condition still remain a huge challenge. In recent years, the structural design of catalysts for CO2 hydrogenation to alcohols has been widely reported, in which great advances have been achieved in the metal-based and metal oxide-based catalysts. In this review, the basic reaction steps and reaction mechanism for the hydrogenation reaction of carbon dioxide to methanol, ethanol and other C2+ alcohols are overviewed in details. The structural characteristic, catalytic performance and structure-activity relationship are analyzed and categorized from the perspective of metals, metal oxide, metal carbide and metal sulfide components. Finally, the challenges and potential research directions of CO2 hydrogenation to alcohols are elucidated and prospected in the future.

Cite this article

Guoqing Cui , Yiyang Hu , Yingjie Lou , Mingxia Zhou , Yuming Li , Yajun Wang , Guiyuan Jiang , Chunming Xu . Research Progress on the Design, Preparation and Properties of Catalysts for CO2 Hydrogenation to Alcohols[J]. Acta Chimica Sinica, 2023 , 81(8) : 1081 -1100 . DOI: 10.6023/A23040126

References

[1]
Yan J.; Zhang Z. Appl. Energ. 2019, 235, 1289.
[2]
An P.; Zhang Q.; Yang Z.; Wu J.; Zhang J.; Wang Y.; Li Y.; Jiang G. Acta Chim. Sinica 2022, 80, 1629. (in Chinese)
[2]
( 安攀, 张庆慧, 杨状, 武佳星, 张佳颖, 王雅君, 李宇明, 姜桂元, 化学学报, 2022, 80, 1629.)
[3]
Zhu J.; Cannizzaro F.; Liu L.; Zhang H.; Kosinov N.; Filot I. A. W.; Rabeah J.; Brueckner A.; Hensen E. J. M. ACS Catal. 2021, 11, 11371.
[4]
Pandey P. H.; Pawar, H. S. J. CO2. Util. 2020, 41, 101267.
[5]
Xu Y.; Zhai P.; Deng Y.; Xie J.; Liu X.; Wang S.; Ma D. Angew. Chem. Int. Ed. 2020, 59, 21736.
[6]
Tian H.; Jiao J.; Zha F.; Guo X.; Tang X.; Chang Y.; Chen H. Catal. Sci. Technol. 2022, 12, 799.
[7]
Gao P.; Zhang L.; Li S.; Zhou Z.; Sun Y. ACS Cent. Sci. 2020, 6, 1657.
[8]
Li W. H.; Wang H. Z.; Jiang X.; Zhu J.; Liu Z. M.; Guo X. W.; Song C. S. RSC Adv. 2018, 8, 7651.
[9]
Fujitani T.; Nakamura I.; Uchijima T.; Nakamura J. Surf. Sci. 1997, 383, 285.
[10]
Collins S. E.; Baltanás M. A.; Bonivardi A. L. J. Catal. 2004, 226, 410.
[11]
Nie X.; Jiang X.; Wang H.; Luo W.; Janik M. J.; Chen Y.; Guo X.; Song C. ACS Catal. 2018, 8, 4873.
[12]
Zhao Y.; Yang Y.; Mims C.; Peden Charles H. F.; Li J.; Mei D. J. Catal. 2011, 281, 199.
[13]
Sun K.; Rui N.; Shen C.; Liu C.-j. J. Phys. Chem. C 2021, 125, 10926.
[14]
Brix F.; Desbuis V.; Piccolo L.; Gaudry E. J. Phys. Chem. Lett. 2020, 11, 7672.
[15]
Li Y.; Chan S. H.; Sun Q. Nanoscale. 2015, 7, 8663.
[16]
Niu J.; Liu H.; Jin Y.; Fan B.; Qi W.; Ran J. Int. J. Hydrog. Energy. 2022, 47, 9183.
[17]
Zhu J.; Su Y.; Chai J.; Muravev V.; Kosinov N.; Hensen E. J. M. ACS Catal. 2020, 10, 11532.
[18]
Tang C.; Tang S.; Sha F.; Han Z.; Feng Z.; Wang J.; Li C. J. Phys. Chem. C 2022, 126, 10399.
[19]
Gutterod E. S.; Lazzarini A.; Fjermestad T.; Kaur G.; Manzoli M.; Bordiga S.; Svelle S.; Lillerud K. P.; Skulason E.; Oien-Odegaard S.; Nova A.; Olsbye U. J. Am. Chem. Soc. 2020, 142, 999.
[20]
Rasmussen P. B.; Kazuta M.; Chorkendorff I. Surf. Sci. 1994, 318, 267.
[21]
Liao F.; Wu X.-P.; Zheng J.; Li M. M.-J.; Kroner A.; Zeng Z.; Hong X.; Yuan Y.; Gong X.-Q.; Tsang S. C. E. Green. Chem. 2017, 19, 270.
[22]
Nakamura I.; Fujitani T.; Uchijima T.; Nakamura J. Surf. Sci. 1998, 400, 387.
[23]
Yang Y.; White M. G.; Liu P. J. Phys. Chem. C 2012, 116, 248.
[24]
Hong Q.-J.; Liu Z.-P. Surf. Sci. 2010, 604, 1869.
[25]
Wang J.; Li G.; Li Z.; Tang C.; Feng Z.; An H.; Liu H.; Liu T.; Li C. Sci. Adv. 2017, 3, e1701290.
[26]
Higham M. D.; Quesne M. G.; Catlow C. R. A. Dalton. T. 2020, 49, 8478.
[27]
Wang J.; Meeprasert J.; Han Z.; Wang H.; Feng Z.; Tang C.; Sha F.; Tang S.; Li G.; Pidko E. A.; Li C. Chinese. J. Catal. 2022, 43, 761.
[28]
Cai Z.; Huang M.; Dai J.; Zhan G.; Sun F.-l.; Zhuang G.-L.; Wang Y.; Tian P.; Chen B.; Ullah S.; Huang J.; Li Q. ACS Catal. 2022, 12, 709.
[29]
Dang S.; Qin B.; Yang Y.; Wang H.; Cai J.; Han Y.; Li S.; Gao P.; Sun Y. Sci. Adv. 2020, 6, eaaz2060.
[30]
Ahmad K.; Upadhyayula S. Int. J. Hydrog. Energy. 2020, 45, 1140.
[31]
Kattel S.; Yan B.; Yang Y.; Chen J. G.; Liu P. J. Am. Chem. Soc. 2016, 138, 12440.
[32]
Gaikwad R.; Bansode A.; Urakawa A. J. Catal. 2016, 343, 127.
[33]
Shen C.; Bao Q.; Xue W.; Sun K.; Zhang Z.; Jia X.; Mei D.; Liu C.-j. J. Energy. Chem. 2022, 65, 623.
[34]
Graciani J.; Mudiyanselage K.; Xu F.; Baber A. E.; Evans J.; Senanayake S. D.; Stacchiola D. J.; Liu P.; Hrbek J.; Fernandez Sanz J.; Rodriguez J. A. Science. 2014, 345, 546.
[35]
Yang Y.; Mei D.; Peden C. H. F.; Campbell C. T.; Mims C. A. ACS Catal. 2015, 5, 7328.
[36]
Tang Q.; Shen Z.; Huang L.; He T.; Adidharma H.; Russell A. G.; Fan M. Phys. Chem. Chem. Phys. 2017, 19, 18539.
[37]
Liu G.; Liu P.; Meng D.; Zhao T.; Qian X.; He Q.; Guo X.; Qi J.; Peng L.; Xue N.; Zhu Y.; Ma J.; Wang Q.; Liu X.; Chen L.; Ding W. Nat. Commun. 2023, 14, 513.
[38]
Xu D.; Wang Y.; Ding M.; Hong X.; Liu G.; Tsang S. C. E. Chem. 2021, 7, 849.
[39]
Zheng J.-n.; An K.; Wang J.-m.; Li J.; Liu Y. J. Fuel. Chem. Technol. 2019, 47, 697.
[40]
Kusama H.; Okabe K.; Sayama K.; Arakawa H. Catal. Today 1996, 28, 261.
[41]
Liu S.; Yang C.; Zha S.; Sharapa D.; Studt F.; Zhao Z. J.; Gong J. Angew. Chem. Int. Ed. 2022, 61, e202109027.
[42]
Xu D.; Ding M.; Hong X.; Liu G.; Tsang S. C. E. ACS Catal. 2020, 10, 5250.
[43]
Wang L.; Wang L.; Zhang J.; Liu X.; Wang H.; Zhang W.; Yang Q.; Ma J.; Dong X.; Yoo S. J.; Kim J. G.; Meng X.; Xiao F. S. Angew. Chem. Int. Ed. 2018, 57, 6104.
[44]
Wang X.; Ramírez P. J.; Liao W.; Rodriguez J. A.; Liu P. J. Am. Chem. Soc. 2021, 143, 13103.
[45]
He Z.; Qian Q.; Ma J.; Meng Q.; Zhou H.; Song J.; Liu Z.; Han B. Angew. Chem. Int. Ed. 2016, 55, 737.
[46]
Ding L.; Shi T.; Gu J.; Cui Y.; Zhang Z.; Yang C.; Chen T.; Lin M.; Wang P.; Xue N.; Peng L.; Guo X.; Zhu Y.; Chen Z.; Ding W. Chem. 2020, 6, 2673.
[47]
Zhong J.; Yang X.; Wu Z.; Liang B.; Huang Y.; Zhang T. Chem. Soc. Rev. 2020, 49, 1385.
[48]
Bagger A.; Ju W.; Varela A. S.; Strasser P.; Rossmeisl J. Chemphyschem. 2017, 18, 3266.
[49]
Lei H.; Hou Z.; Xie J. Fuel. 2016, 164, 191.
[50]
Yu J.; Yang M.; Zhang J.; Ge Q.; Zimina A.; Pruessmann T.; Zheng L.; Grunwaldt J.-D.; Sun J. ACS Catal. 2020, 10, 14694.
[51]
Dasireddy V. D. B. C.; Likozar B. Renew. Energ. 2019, 140, 452.
[52]
Li M. M. J.; Chen C.; Ayval? T.; Suo H.; Zheng J.; Teixeira I. F.; Ye L.; Zou H.; O’Hare D.; Tsang S. C. E. ACS Catal. 2018, 8, 4390.
[53]
Le-Phuc N.; Van Tran T.; Thuy P. N.; Nguyen L. H.; Trinh T. T. React. Kinet. Mech. Cat. 2017, 124, 171.
[54]
Stangeland K.; Chamssine F.; Fu W.; Huang Z.; Duan X.; Yu, Z. J. CO2. Util. 2021, 50, 101609.
[55]
Hu X.; Zhao C.; Guan Q.; Hu X.; Li W.; Chen J. Inorg. Chem. Front. 2019, 6, 1799.
[56]
Arena F.; Mezzatesta G.; Zafarana G.; Trunfio G.; Frusteri F.; Spadaro L. Catal. Today 2013, 210, 39.
[57]
Li H.; Wang L.; Gao X.; Xiao F.-S. Ind. Eng. Chem. Res. 2022, 61, 10446.
[58]
Guo Q.; Li S.; Li J.; Hu Y.; Duanmu C. ACS Appl. Energ. Mater. 2021, 4, 8311.
[59]
Zhao H.; Yu R.; Ma S.; Xu K.; Chen Y.; Jiang K.; Fang Y.; Zhu C.; Liu X.; Tang Y.; Wu L.; Wu Y.; Jiang Q.; He P.; Liu Z.; Tan L. Nat. Catal. 2022, 5, 818.
[60]
Jangam A.; Hongmanorom P.; Ming H.; Jeffry Poerjoto A.; Xi S.; Borgna A.; Kawi S. ACS Appl. Energ. Mater. 2021, 4, 12149.
[61]
Zhou H.; Chen Z.; López A. V.; López E. D.; Lam E.; Tsoukalou A.; Willinger E.; Kuznetsov D. A.; Mance D.; Kierzkowska A.; Donat F.; Abdala P. M.; Comas-Vives A.; Copéret C.; Fedorov A.; Müller C. R. Nat. Catal. 2021, 4, 860.
[62]
Din I. U.; Alotaibi M. A.; Alharthi A. I.; Al-Shalwi M. N.; Alshehri F. Fuel. 2022, 330, 125643.
[63]
Han C.; Zhang H.; Li C.; Huang H.; Wang S.; Wang P.; Li J. Appl. Catal. A-Gen. 2022, 643, 118805.
[64]
An B.; Zhang J.; Cheng K.; Ji P.; Wang C.; Lin W. J. Am. Chem. Soc. 2017, 139, 3834.
[65]
Ye H.; Na W.; Gao W.; Wang H. Energy Technol. 2020, 8, 2000194.
[66]
Song H.-t.; Fazeli A.; Kim H. D.; Eslami A. A.; Noh Y. S.; Saeidabad N. G.; Moon D. J. Fuel. 2021, 283, 118987.
[67]
Ay S.; Ozdemir M.; Melikoglu M. Chem. Eng. Res. Des. 2021, 175, 146.
[68]
Cai W.; Chen Q.; Wang F.; Li Z.; Yu H.; Zhang S.; Cui L.; Li C. Catal. Lett. 2019, 149, 2508.
[69]
Li S.; Guo H.; Luo C.; Zhang H.; Xiong L.; Chen X.; Ma L. Catal. Lett. 2013, 143, 345.
[70]
Jiang F.; Wang S.; Liu B.; Liu J.; Wang L.; Xiao Y.; Xu Y.; Liu X. ACS Catal. 2020, 10, 11493.
[71]
Gutterod E. S.; Lazzarini A.; Fjermestad T.; Kaur G.; Manzoli M.; Bordiga S.; Svelle S.; Lillerud K. P.; Skulason E.; Oien-Odegaard S.; Nova A.; Olsbye U. J. Am. Chem. Soc. 2020, 142, 999.
[72]
Yang C.; Mu R.; Wang G.; Song J.; Tian H.; Zhao Z.-J.; Gong J. Chem. Sci. 2019, 10, 3161.
[73]
Wang D.; Bi Q.; Yin G.; Zhao W.; Huang F.; Xie X.; Jiang M. Chem. Commun. 2016, 52, 14226.
[74]
Shen C.; Sun K.; Zhang Z.; Rui N.; Jia X.; Mei D.; Liu C.-j. ACS Catal. 2021, 11, 4036.
[75]
Tadahiro F.; Isao N. B. Chem. Soc. Jpn. 2002, 75, 1393.
[76]
Manrique R.; Jiménez R.; Rodríguez-Pereira J.; Baldovino-Medrano V. G.; Karelovic A. Int. J. Hydrog. Energy. 2019, 44, 16526.
[77]
Zabilskiy M.; Sushkevich V. L.; Newton M. A.; Krumeich F.; Nachtegaal M.; van Bokhoven J. A. Angew. Chem. Int. Ed. 2021, 60, 17053.
[78]
Li X.; Liu G.; Xu D.; Hong X.; Tsang S. C. E. J. Mater. Chem. A 2019, 7, 23878.
[79]
Jiang X.; Nie X.; Wang X.; Wang H.; Koizumi N.; Chen Y.; Guo X.; Song C. J. Catal. 2019, 369, 21.
[80]
Bai S.; Shao Q.; Wang P.; Dai Q.; Wang X.; Huang X. J. Am. Chem. Soc. 2017, 139, 6827.
[81]
Fiordaliso E. M.; Sharafutdinov I.; Carvalho H. W. P.; Grunwaldt J.-D.; Hansen T. W.; Chorkendorff I.; Wagner J. B.; Damsgaard C. D. ACS Catal. 2015, 5, 5827.
[82]
Toyao T.; Kayamori S.; Maeno Z.; Siddiki S. M. A. H.; Shimizu K.-i. ACS Catal. 2019, 9, 8187.
[83]
He Z.; Qian Q.; Ma J.; Meng Q.; Zhou H.; Song J.; Liu Z.; Han B. Angew. Chem. Int. Ed. 2016, 55, 737.
[84]
Chen Y.; Li H.; Zhao W.; Zhang W.; Li J.; Li W.; Zheng X.; Yan W.; Zhang W.; Zhu J.; Si R.; Zeng J. Nat. Commun. 2019, 10, 1885.
[85]
Li H.; Wang L.; Dai Y.; Pu Z.; Lao Z.; Chen Y.; Wang M.; Zheng X.; Zhu J.; Zhang W.; Si R.; Ma C.; Zeng J. Nat. Nanotechnol. 2018, 13, 411.
[86]
Wang J.; Sun K.; Jia X.; Liu C.-j. Catal. Today 2021, 365, 341.
[87]
Lu Z.; Wang J.; Sun K.; Xiong S.; Zhang Z.; Liu C.-j. Green Chem. Eng. 2022, 3, 165.
[88]
Zheng K.; Li Y.; Liu B.; Jiang F.; Xu Y.; Liu X. Angew. Chem. Int. Ed. 2022, 61, e2022109.
[89]
Chen T.-y.; Su J.; Zhang Z.; Cao C.; Wang X.; Si R.; Liu X.; Shi B.; Xu J.; Han Y.-F. ACS Catal. 2018, 8, 8606.
[90]
Wang L.; He S.; Wang L.; Lei Y.; Meng X.; Xiao F.-S. ACS Catal. 2019, 9, 11335.
[91]
Pei Y.; Ding Y.; Zang J.; Song X.; Dong W.; Zhu H.; Wang T.; Chen W. Chinese. J. Catal. 2015, 36, 252.
[92]
Takashi T.; Atsushi M.; Hiro-o T. Chem. Lett. 1985, 14, 593.
[93]
Geng W.; Liu F.; Han H.; Xiao L.; Wu W. J. Fuel. Chem. Technol. 2017, 45, 458. (in Chinese)
[93]
( 耿文浩, 刘飞, 韩寒, 肖林飞, 吴伟, 燃料化学学报, 2017, 45, 458.)
[94]
Zhang Y.; He Y.; Cao M.; Liu B.; Li J. Fuel. 2022, 325, 124854.
[95]
Nieskens D. L. S.; Ferrari D.; Liu Y.; Kolonko R. Catal. Commun. 2011, 14, 111.
[96]
Liu S.; Zhou H.; Zhang L.; Ma Z.; Wang Y. Chem. Eng. Technol. 2019, 42, 962.
[97]
Ait Ahsaine H.; Zbair M.; BaQais A.; Arab M. Catalysts. 2022, 12, 450.
[98]
Shinde G. Y.; Mote A. S.; Gawande M. B. Catalysts. 2022, 12, 94.
[99]
Martin O.; Martin A. J.; Mondelli C.; Mitchell S.; Segawa T. F.; Hauert R.; Drouilly C.; Curulla-Ferre D.; Perez-Ramirez J. Angew. Chem. Int. Ed. 2016, 55, 6261.
[100]
Ye J.; Liu C.; Mei D.; Ge Q. ACS Catal. 2013, 3, 1296.
[101]
Frei M. S.; Mondelli C.; Cesarini A.; Krumeich F.; Hauert R.; Stewart J. A.; Curulla Ferré D.; Pérez-Ramírez J. ACS Catal. 2020, 10, 1133.
[102]
Tsoukalou A.; Abdala P. M.; Stoian D.; Huang X.; Willinger M.-G.; Fedorov A.; Müller C. R. J. Am. Chem. Soc. 2019, 141, 13497.
[103]
Chen P.; Tao L.; Zhu J.; Zhao G.; Liu Y.; Lu Y. Energy Technol. 2019, 7, 1800747.
[104]
Chen T.-y.; Cao C.; Chen T.-b.; Ding X.; Huang H.; Shen L.; Cao X.; Zhu M.; Xu J.; Gao J.; Han Y.-F. ACS Catal. 2019, 9, 8785.
[105]
Cai Z.; Dai J.; Li W.; Tan K. B.; Huang Z.; Zhan G.; Huang J.; Li Q. ACS Catal. 2020, 10, 13275.
[106]
Men Y.-L.; Liu Y.; Wang Q.; Luo Z.-H.; Shao S.; Li Y.-B.; Pan Y.-X. Chem. Eng. Sci. 2019, 200, 167.
[107]
Yao L.; Shen X.; Pan Y.; Peng Z. J. Catal. 2019, 372, 74.
[108]
Lu Z.; Sun K.; Wang J.; Zhang Z.; Liu C. Catalysts 2020, 10, 1360.
[109]
Snider J. L.; Streibel V.; Hubert M. A.; Choksi T. S.; Valle E.; Upham D. C.; Schumann J.; Duyar M. S.; Gallo A.; Abild-Pedersen F.; Jaramillo T. F. ACS Catal. 2019, 9, 3399.
[110]
Shen C.; Sun K.; Zou R.; Wu Q.; Mei D.; Liu C.-j. ACS Catal. 2022, 12, 12658.
[111]
Han Z.; Tang C.; Wang J.; Li L.; Li C. J. Catal. 2021, 394, 236.
[112]
Witoon T.; Numpilai T.; Nijpanich S.; Chanlek N.; Kidkhunthod P.; Cheng C. K.; Ng K. H.; Vo D.-V. N.; Ittisanronnachai S.; Wattanakit C.; Chareonpanich M.; Limtrakul J. Chem. Eng. J. 2022, 431, 133211.
[113]
Wang J.; Li G.; Li Z.; Tang C.; Feng Z.; An H.; Liu H.; Liu T.; Li C. Sci. Adv. 2017, 3, e1701290.
[114]
Wang J.; Tang C.; Li G.; Han Z.; Li Z.; Liu H.; Cheng F.; Li C. ACS Catal. 2019, 9, 10253.
[115]
Temvuttirojn C.; Poo-arporn Y.; Chanlek N.; Cheng C. K.; Chong C. C.; Limtrakul J.; Witoon T. Ind. Eng. Chem. Res. 2020, 59, 5525.
[116]
Li W.; Wang K.; Huang J.; Liu X.; Fu D.; Huang J.; Li Q.; Zhan G. ACS Appl. Mater. Inter. 2019, 11, 33263.
[117]
Sha F.; Tang C.; Tang S.; Wang Q.; Han Z.; Wang J.; Li C. J. Catal. 2021, 404, 383.
[118]
Fang X.; Xi Y.; Jia H.; Chen C.; Wang Y.; Song Y.; Du T. J. Ind. Eng. Chem. 2020, 88, 268.
[119]
Huang C.; Wu Z.; Luo H.; Zhang S.; Shao Z.; Wang H.; Sun Y. ACS Appl. Energ. Mater. 2021, 4, 9258.
[120]
Lee K.; Anjum U.; Araújo T. P.; Mondelli C.; He Q.; Furukawa S.; Pérez-Ramírez J.; Kozlov S. M.; Yan N. Appl. Catal. B-Environ. 2022, 304.
[121]
Hu J.; Yu L.; Deng J.; Wang Y.; Cheng K.; Ma C.; Zhang Q.; Wen W.; Yu S.; Pan Y.; Yang J.; Ma H.; Qi F.; Wang Y.; Zheng Y.; Chen M.; Huang R.; Zhang S.; Zhao Z.; Mao J.; Meng X.; Ji Q.; Hou G.; Han X.; Bao X.; Wang Y.; Deng D. Nat. Catal. 2021, 4, 242.
[122]
Zhou S.; Zeng H. C. ACS Catal. 2022, 12, 9872.
[123]
Pei Y.-P.; Liu J.-X.; Zhao Y.-H.; Ding Y.-J.; Liu T.; Dong W.-D.; Zhu H.-J.; Su H.-Y.; Yan L.; Li J.-L.; Li W.-X. ACS Catal. 2015, 5, 3620.
[124]
Zhang S.; Liu X.; Shao Z.; Wang H.; Sun Y. J. Catal. 2020, 382, 86.
[125]
Yang Q.; Kondratenko V. A.; Petrov S. A.; Doronkin D. E.; Sara?i E.; Lund H.; Arinchtein A.; Kraehnert R.; Skrypnik A. S.; Matvienko A. A.; Kondratenko E. V. Angew. Chem. Int. Ed. 2022, 61, e202116517.
[126]
Zhang S.; Wu Z.; Liu X.; Shao Z.; Xia L.; Zhong L.; Wang H.; Sun Y. Appl. Catal. B-Environ. 2021, 293, 120207.
[127]
Han H.; Geng W.; Xiao L.; Wu W. J. Taiwan Inst. Chem. E 2019, 95, 112.
[128]
Chen Y.; Choi S.; Thompson L. T. J. Catal. 2016, 343, 147.
[129]
Posada-Pérez S.; Ramírez P. J.; Evans J.; Vi?es F.; Liu P.; Illas F.; Rodriguez J. A. J. Am. Chem. Soc. 2016, 138, 8269.
[130]
Dongil A. B.; Zhang Q.; Pastor-Pérez L.; Ramírez-Reina T.; Guerrero-Ruiz A.; Rodríguez-Ramos I. Catalysts. 2020, 10, 1213.
[131]
Li Y.-M.; Liu Z.-Y.; Zhang Q.-Y.; Wang Y.-J.; Cui G.-Q.; Zhao Z.; Xu C.-M.; Jiang G.-Y. Pet. Sci. 2023, 20, 559.
[132]
Wu D.; Deng K.; Hu B.; Lu Q.; Liu G.; Hong X. ChemCatChem. 2019, 11, 1598.
Outlines

/