Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (8): 1081-1100.DOI: 10.6023/A23040126 Previous Articles
Review
崔国庆*(), 胡溢玚, 娄颖洁, 周明霞, 李宇明, 王雅君, 姜桂元, 徐春明*()
投稿日期:
2023-04-10
发布日期:
2023-09-14
作者简介:
崔国庆, 博士, 硕士生导师, 2020年6月在北京化工大学获得化学工程与技术博士学位, 师从段雪教授和卫敏教授. 2020年至今在中国石油大学(北京)重质油全国重点实验室从事能源催化方面的研究工作, 目前, 已在Nat. Commun.、Angew. Chem. Int. Ed.、ACS Catal.、Appl. Catal. B: Environ.、J. Catal.和《化工学报》等期刊发表研究论文20余篇, 获2021年中国分析测试协会科学技术奖(CAIA奖)一等奖1项等. |
胡溢玚, 中国石油大学(北京)在读研究生, 2021年6月于中国石油大学(北京)化学工程与环境学院获得能源化学工程学士学位, 主要研究方向为二氧化碳的热催化转化与高效利用. |
徐春明, 教授, 博士生导师, 中国科学院院士, 重质油全国重点实验室主任, 碳中和未来技术学院院长, 山东石油化工学院院长, 国家杰出青年基金获得者, “全国优秀教师”称号获得者, 国家“万人计划”百千万工程领军人才, 国家自然科学基金创新研究群体项目负责人, 全国优秀教师, 北京市教学名师, 北京市课程思政教学名师, 国家级教学团队负责人, 中国化工学会副理事长. 主要致力于重油高效转化和清洁油品生产、新能源技术等研究, 主持国家重点研发、国家基金委创新研究群体、重点基金等20余个项目, 获国家技术发明二等奖1项, 国家科技进步二等奖2项, 中国石油和化学工业联合会技术发明特等奖1项, 省部级一等奖8项等, 发表高水平论文300余篇, 撰写专著4部, 授权国际发明专利36件、中国发明专利102件, 其中实施转化48件等. |
基金资助:
Guoqing Cui(), Yiyang Hu, Yingjie Lou, Mingxia Zhou, Yuming Li, Yajun Wang, Guiyuan Jiang, Chunming Xu()
Received:
2023-04-10
Published:
2023-09-14
Contact:
*E-mail: cui@cup.edu.cn; xcm@cup.edu.cn
About author:
Supported by:
Share
Guoqing Cui, Yiyang Hu, Yingjie Lou, Mingxia Zhou, Yuming Li, Yajun Wang, Guiyuan Jiang, Chunming Xu. Research Progress on the Design, Preparation and Properties of Catalysts for CO2 Hydrogenation to Alcohols[J]. Acta Chimica Sinica, 2023, 81(8): 1081-1100.
催化剂 | 温度/℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | 甲醇 选择性a/% | 甲醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
CuZnAl-C-1.0 | 240 | 3.0 | 3600 | 3 | 14.6 | 63.6 | 120 | [ |
CuZnAl-O-1.0 | 240 | 3.0 | 3600 | 3 | 12.1 | 62.6 | 100 | [ |
CuZnAl-U-1.0 | 240 | 3.0 | 3600 | 3 | 3.2 | 53.9 | 22 | [ |
AE-Cu/SiO2 | 190 | 3.0 | 2040 | 3 | 1.4 | 52.8 | 30 (mg•gCu−1•h−1) | [ |
FSP-Cu/SiO2 | 190 | 3.0 | 2040 | 3 | 5.2 | 79.3 | 168 (mg•gCu−1•h−1) | [ |
Cu/ZnO/Al2O3 | 250 | 2.0 | 2000 | 3 | 13.4 | 13 | 9.28 (mg•mLcat−1•h−1) | [ |
CuZnGa-LDH | 270 | 4.5 | 18000 | 3 | — | — | 590 | [ |
CuZnGa-LDH-ww | 270 | 4.5 | 18000 | 3 | — | — | 320 | [ |
CZG5Ga | 270 | 4.5 | 18000 | 3 | — | — | 370 | [ |
CuZn/Al-M | 280 | 0.5 | 36000 | 3 | 3.1 | 28.6 | 105 | [ |
CuZn/Al-N | 280 | 0.5 | 36000 | 3 | 2.8 | 24.5 | 83 | [ |
Cu/Al-M | 280 | 0.5 | 36000 | 3 | 0.2 | 8.4 | 2 | [ |
2CuZnAl-In3 | 250 | 3.0 | 30000 | 3 | — | 35 | 134.4 | [ |
Cu0.5Zn0.4Ce0.1/SBA-15 | 260 | 3.0 | 1200 | 3 | 6.5 | — | — | [ |
Cu0.5Zn0.4Ce0.1/MCM-41 | 260 | 3.0 | 1200 | 3 | 2.2 | — | — | [ |
Cu0.5Zn0.4Ce0.1/SiO2 | 260 | 3.0 | 1200 | 3 | 2.8 | — | — | [ |
Cu0.5Zn0.4Ce0.1 | 260 | 3.0 | 1200 | 3 | 13.9 | — | [ | |
CuZnAlZr | 250 | 3.0 | 54000 | 3 | 14.2 | 57.2 | 1376 | [ |
Cu-ZnO/Al2O3-ZrO2 | 200 | 5.0 | 7800 | 3 | 8.4 | 94 | 201.6 | [ |
CuZnZr-1 | 180 | 3.0 | — | 3 | 1.61 | 100.0 | — | [ |
CuZnZr-1.5 | 180 | 3.0 | — | 3 | 2.42 | 100.0 | — | [ |
CuZnZr-2 | 180 | 3.0 | — | 3 | 2.75 | 100.0 | — | [ |
CuZnZr-2.5 | 180 | 3.0 | — | 3 | 3.87 | 100.0 | — | [ |
CuZnZr-4 | 180 | 3.0 | — | 3 | 4.37 | 89.22 | — | [ |
CuZnZr-8 | 180 | 3.0 | — | 3 | 6.26 | 83.41 | — | [ |
CuZnZr-12 | 180 | 3.0 | — | 3 | 6.67 | 82.74 | — | [ |
CuZnZr-15 | 180 | 3.0 | — | 3 | 6.50 | 82.97 | — | [ |
Cu-SiO2P | 225 | 3.0 | — | 3 | 3.5 | 77 | 140 | [ |
Cu/SiO2−2h | 230 | 2.5 | — | 3 | — | 45 | 0.41 (g•gCu−1•h−1) | [ |
Cu/Mo2CTx/SiO2-2h | 230 | 2.5 | — | 3 | — | 54 | 1.5 (g•gCu−1•h−1) | [ |
Cu/Mo2CTx/SiO2-6h | 230 | 2.5 | — | 3 | — | 52 | 2.5 (g•gCu−1•h−1) | [ |
CuZnO-MOF-74-350 | 190 | 4.0 | 4000 | 3 | 7.5 | 78.2 | 80 | [ |
CuZnO-MOF-74-350 | 210 | 4.0 | 16000 | 3 | 6.3 | 79.6 | 290 | [ |
CuZnO-MOF-74-350 | 240 | 4.0 | 16000 | 3 | 14.5 | 54.0 | 450 | [ |
Cu-ZnO@UiO-bpy | 250 | 4.0 | 18000 | 3 | 3.3 | 100 | 2.59 (gMeOH•kgCu−1•h−1) | [ |
Cu/ZnO/Al2O3 | 250 | 4.0 | 4000 | 3 | ≈22 | 43.7 | — | [ |
Cu-La/ZnO/Al2O3 | 250 | 4.0 | 4000 | 3 | ≈25 | 43.3 | — | [ |
Cu-Sm/ZnO/Al2O3 | 250 | 4.0 | 4000 | 3 | ≈22 | 41.4 | — | [ |
Cu/ZnO/Al2O3 | 270 | 3.0 | — | 3 | — | 93.5 b | 490 | [ |
Cu/ZnO/Al2O3-Mg | 270 | 3.0 | — | 3 | — | 78.5 b | — | [ |
Cu/ZnO/Al2O3-Mg-Cr1 | 270 | 3.0 | — | 3 | — | 97.7 b | 520 | [ |
Cu/ZnO/Al2O3-Mg-Cr2 | 270 | 3.0 | — | 3 | — | 98.3 b | 530 | [ |
CuZnGa | 270 | 3.0 | — | 3 | 15.9 | — | 135.7 | [ |
CuZnFe | 270 | 3.0 | — | 3 | 13.2 | — | 46.4 | [ |
催化剂 | 温度/℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | 甲醇 选择性a/% | 甲醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
CuZnAl-C-1.0 | 240 | 3.0 | 3600 | 3 | 14.6 | 63.6 | 120 | [ |
CuZnAl-O-1.0 | 240 | 3.0 | 3600 | 3 | 12.1 | 62.6 | 100 | [ |
CuZnAl-U-1.0 | 240 | 3.0 | 3600 | 3 | 3.2 | 53.9 | 22 | [ |
AE-Cu/SiO2 | 190 | 3.0 | 2040 | 3 | 1.4 | 52.8 | 30 (mg•gCu−1•h−1) | [ |
FSP-Cu/SiO2 | 190 | 3.0 | 2040 | 3 | 5.2 | 79.3 | 168 (mg•gCu−1•h−1) | [ |
Cu/ZnO/Al2O3 | 250 | 2.0 | 2000 | 3 | 13.4 | 13 | 9.28 (mg•mLcat−1•h−1) | [ |
CuZnGa-LDH | 270 | 4.5 | 18000 | 3 | — | — | 590 | [ |
CuZnGa-LDH-ww | 270 | 4.5 | 18000 | 3 | — | — | 320 | [ |
CZG5Ga | 270 | 4.5 | 18000 | 3 | — | — | 370 | [ |
CuZn/Al-M | 280 | 0.5 | 36000 | 3 | 3.1 | 28.6 | 105 | [ |
CuZn/Al-N | 280 | 0.5 | 36000 | 3 | 2.8 | 24.5 | 83 | [ |
Cu/Al-M | 280 | 0.5 | 36000 | 3 | 0.2 | 8.4 | 2 | [ |
2CuZnAl-In3 | 250 | 3.0 | 30000 | 3 | — | 35 | 134.4 | [ |
Cu0.5Zn0.4Ce0.1/SBA-15 | 260 | 3.0 | 1200 | 3 | 6.5 | — | — | [ |
Cu0.5Zn0.4Ce0.1/MCM-41 | 260 | 3.0 | 1200 | 3 | 2.2 | — | — | [ |
Cu0.5Zn0.4Ce0.1/SiO2 | 260 | 3.0 | 1200 | 3 | 2.8 | — | — | [ |
Cu0.5Zn0.4Ce0.1 | 260 | 3.0 | 1200 | 3 | 13.9 | — | [ | |
CuZnAlZr | 250 | 3.0 | 54000 | 3 | 14.2 | 57.2 | 1376 | [ |
Cu-ZnO/Al2O3-ZrO2 | 200 | 5.0 | 7800 | 3 | 8.4 | 94 | 201.6 | [ |
CuZnZr-1 | 180 | 3.0 | — | 3 | 1.61 | 100.0 | — | [ |
CuZnZr-1.5 | 180 | 3.0 | — | 3 | 2.42 | 100.0 | — | [ |
CuZnZr-2 | 180 | 3.0 | — | 3 | 2.75 | 100.0 | — | [ |
CuZnZr-2.5 | 180 | 3.0 | — | 3 | 3.87 | 100.0 | — | [ |
CuZnZr-4 | 180 | 3.0 | — | 3 | 4.37 | 89.22 | — | [ |
CuZnZr-8 | 180 | 3.0 | — | 3 | 6.26 | 83.41 | — | [ |
CuZnZr-12 | 180 | 3.0 | — | 3 | 6.67 | 82.74 | — | [ |
CuZnZr-15 | 180 | 3.0 | — | 3 | 6.50 | 82.97 | — | [ |
Cu-SiO2P | 225 | 3.0 | — | 3 | 3.5 | 77 | 140 | [ |
Cu/SiO2−2h | 230 | 2.5 | — | 3 | — | 45 | 0.41 (g•gCu−1•h−1) | [ |
Cu/Mo2CTx/SiO2-2h | 230 | 2.5 | — | 3 | — | 54 | 1.5 (g•gCu−1•h−1) | [ |
Cu/Mo2CTx/SiO2-6h | 230 | 2.5 | — | 3 | — | 52 | 2.5 (g•gCu−1•h−1) | [ |
CuZnO-MOF-74-350 | 190 | 4.0 | 4000 | 3 | 7.5 | 78.2 | 80 | [ |
CuZnO-MOF-74-350 | 210 | 4.0 | 16000 | 3 | 6.3 | 79.6 | 290 | [ |
CuZnO-MOF-74-350 | 240 | 4.0 | 16000 | 3 | 14.5 | 54.0 | 450 | [ |
Cu-ZnO@UiO-bpy | 250 | 4.0 | 18000 | 3 | 3.3 | 100 | 2.59 (gMeOH•kgCu−1•h−1) | [ |
Cu/ZnO/Al2O3 | 250 | 4.0 | 4000 | 3 | ≈22 | 43.7 | — | [ |
Cu-La/ZnO/Al2O3 | 250 | 4.0 | 4000 | 3 | ≈25 | 43.3 | — | [ |
Cu-Sm/ZnO/Al2O3 | 250 | 4.0 | 4000 | 3 | ≈22 | 41.4 | — | [ |
Cu/ZnO/Al2O3 | 270 | 3.0 | — | 3 | — | 93.5 b | 490 | [ |
Cu/ZnO/Al2O3-Mg | 270 | 3.0 | — | 3 | — | 78.5 b | — | [ |
Cu/ZnO/Al2O3-Mg-Cr1 | 270 | 3.0 | — | 3 | — | 97.7 b | 520 | [ |
Cu/ZnO/Al2O3-Mg-Cr2 | 270 | 3.0 | — | 3 | — | 98.3 b | 530 | [ |
CuZnGa | 270 | 3.0 | — | 3 | 15.9 | — | 135.7 | [ |
CuZnFe | 270 | 3.0 | — | 3 | 13.2 | — | 46.4 | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | C2+醇 选择性a/% | C2+醇STY/ (mg•gcat−1•h−1) | C2+OH/ROH (w/%) | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Cs-Cu0.2Fe1.0Zn1.0 | 330 | 5.0 | 4500 | 3 | — | 13.8 | 36.2 | — | [ |
Cs-Cu0.5Fe1.0Zn1.0 | 330 | 5.0 | 4500 | 3 | — | 17.9 | 64.5 | — | [ |
Cs-Cu0.8Fe1.0Zn1.0 | 330 | 5.0 | 4500 | 3 | 36.6 | 19.8 | 73.4 | 93.8 | [ |
Cs-Cu0.9Fe1.0Zn1.0 | 330 | 5.0 | 4500 | 3 | — | 17.2 | 51.7 | — | [ |
Cs-Cu0.9Fe1.0Zn1.0 | 310 | 5.0 | 4500 | 3 | 23.7 | 17.4 | 36.6 | 82.1 | [ |
Cu@Na-Beta | 300 | 1.3 | 12000 | 3 | 7.9 | ≈100 b | 258 | — | [ |
CuZnK0.15 | 300 | 6.0 | 5000 | 3 | 25.1 | 10.91(总醇) | 0.04 (g•mL−1•h−1) | 36.3 | [ |
CuZnFe0.25K0.15 | 300 | 6.0 | 5000 | 3 | 33.6 | 23.64(总醇) | 0.10 (g•mL−1•h−1) | 77.7 | [ |
CuZnFe0.5K0.15 | 300 | 6.0 | 5000 | 3 | 42.3 | 36.67(总醇) | 0.17 (g•mL−1•h−1) | 87.1 | [ |
CuZnFe0.75K0.15 | 300 | 6.0 | 5000 | 3 | 45.1 | 27.11(总醇) | 0.14 (g•mL−1•h−1) | 85.6 | [ |
CuZnFe1.0K0.15 | 300 | 6.0 | 5000 | 3 | 36.1 | 26.76(总醇) | 0.11 (g•mL−1•h−1) | 84.3 | [ |
CuZnFe1.5K0.15 | 300 | 6.0 | 5000 | 3 | 33.8 | 22.44(总醇) | 0.06 (g•mL−1•h−1) | 82.3 | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | C2+醇 选择性a/% | C2+醇STY/ (mg•gcat−1•h−1) | C2+OH/ROH (w/%) | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Cs-Cu0.2Fe1.0Zn1.0 | 330 | 5.0 | 4500 | 3 | — | 13.8 | 36.2 | — | [ |
Cs-Cu0.5Fe1.0Zn1.0 | 330 | 5.0 | 4500 | 3 | — | 17.9 | 64.5 | — | [ |
Cs-Cu0.8Fe1.0Zn1.0 | 330 | 5.0 | 4500 | 3 | 36.6 | 19.8 | 73.4 | 93.8 | [ |
Cs-Cu0.9Fe1.0Zn1.0 | 330 | 5.0 | 4500 | 3 | — | 17.2 | 51.7 | — | [ |
Cs-Cu0.9Fe1.0Zn1.0 | 310 | 5.0 | 4500 | 3 | 23.7 | 17.4 | 36.6 | 82.1 | [ |
Cu@Na-Beta | 300 | 1.3 | 12000 | 3 | 7.9 | ≈100 b | 258 | — | [ |
CuZnK0.15 | 300 | 6.0 | 5000 | 3 | 25.1 | 10.91(总醇) | 0.04 (g•mL−1•h−1) | 36.3 | [ |
CuZnFe0.25K0.15 | 300 | 6.0 | 5000 | 3 | 33.6 | 23.64(总醇) | 0.10 (g•mL−1•h−1) | 77.7 | [ |
CuZnFe0.5K0.15 | 300 | 6.0 | 5000 | 3 | 42.3 | 36.67(总醇) | 0.17 (g•mL−1•h−1) | 87.1 | [ |
CuZnFe0.75K0.15 | 300 | 6.0 | 5000 | 3 | 45.1 | 27.11(总醇) | 0.14 (g•mL−1•h−1) | 85.6 | [ |
CuZnFe1.0K0.15 | 300 | 6.0 | 5000 | 3 | 36.1 | 26.76(总醇) | 0.11 (g•mL−1•h−1) | 84.3 | [ |
CuZnFe1.5K0.15 | 300 | 6.0 | 5000 | 3 | 33.8 | 22.44(总醇) | 0.06 (g•mL−1•h−1) | 82.3 | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | 甲醇 选择性a/% | 甲醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
Pd/SiO2 | 220 | 0.8 | — | 3 | — | 3 | — | [ |
Pd-Ga/SiO2 | 220 | 0.8 | — | 3 | — | 12 | — | [ |
Pd-Zn/SiO2 | 220 | 0.8 | — | 3 | — | 30 | — | [ |
2%Pd/CeO2-R | 240 | 3.0 | 6000 | 3 | 4.6 | 25.9 | 22.8 | [ |
2%Pd/CeO2-R | 240 | 5.0 | 2000 | 3 | 5.9 | 47.7 | 17.9 | [ |
2%Pd/CeO2-P | 240 | 3.0 | 2000 | 3 | — | — | 9.5 | [ |
2%Pd/CeO2-C | 240 | 3.0 | 2000 | 3 | — | — | 5.0 | [ |
2%Pd/CeO2-O | 240 | 3.0 | 2000 | 3 | — | — | 2.5 | [ |
PdZn/SiO2 | 260 | 3.0 | 30000 | 3 | 2.6 | 11.2 | 30 | [ |
PdZn/Al2O3 | 260 | 3.0 | 30000 | 3 | 4.4 | 6.0 | 27 | [ |
PdZn/ZnO/SiO2 | 260 | 3.0 | 30000 | 3 | 3.6 | 49.8 | 184 | [ |
PdZn/ZnO/SiO2 | 260 | 3.0 | 30000 | 3 | 3.3 | 65.3 | 443 | [ |
Pd-ZnO@ZIF-8 | 250 | 4.5 | 19200 | 3 | 6.6 | 79 | 360 | [ |
Pd-ZnO@ZIF-8 | 270 | 4.5 | 19200 | 3 | 9.3 | 74 | 470 | [ |
Pt(3)/Mo22x(30)/TiO2 | 150 | 6.0 | — | 5 | — | 66 | — | [ |
UiO-67-Pt(2.7wt%) | 170 | 0.8 | — | 6 | 1.5 | 19 | — | [ |
Rh/In2O3 | 250 | 5.0 | 21000 | 4 | 4.0 | 82.0 | 188.2 | [ |
Rh/In2O3 | 275 | 5.0 | 21000 | 4 | 9.3 | 72.6 | 385.3 | [ |
Rh/In2O3 | 300 | 5.0 | 21000 | 4 | 17.1 | 56.1 | 544.8 | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | 甲醇 选择性a/% | 甲醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
Pd/SiO2 | 220 | 0.8 | — | 3 | — | 3 | — | [ |
Pd-Ga/SiO2 | 220 | 0.8 | — | 3 | — | 12 | — | [ |
Pd-Zn/SiO2 | 220 | 0.8 | — | 3 | — | 30 | — | [ |
2%Pd/CeO2-R | 240 | 3.0 | 6000 | 3 | 4.6 | 25.9 | 22.8 | [ |
2%Pd/CeO2-R | 240 | 5.0 | 2000 | 3 | 5.9 | 47.7 | 17.9 | [ |
2%Pd/CeO2-P | 240 | 3.0 | 2000 | 3 | — | — | 9.5 | [ |
2%Pd/CeO2-C | 240 | 3.0 | 2000 | 3 | — | — | 5.0 | [ |
2%Pd/CeO2-O | 240 | 3.0 | 2000 | 3 | — | — | 2.5 | [ |
PdZn/SiO2 | 260 | 3.0 | 30000 | 3 | 2.6 | 11.2 | 30 | [ |
PdZn/Al2O3 | 260 | 3.0 | 30000 | 3 | 4.4 | 6.0 | 27 | [ |
PdZn/ZnO/SiO2 | 260 | 3.0 | 30000 | 3 | 3.6 | 49.8 | 184 | [ |
PdZn/ZnO/SiO2 | 260 | 3.0 | 30000 | 3 | 3.3 | 65.3 | 443 | [ |
Pd-ZnO@ZIF-8 | 250 | 4.5 | 19200 | 3 | 6.6 | 79 | 360 | [ |
Pd-ZnO@ZIF-8 | 270 | 4.5 | 19200 | 3 | 9.3 | 74 | 470 | [ |
Pt(3)/Mo22x(30)/TiO2 | 150 | 6.0 | — | 5 | — | 66 | — | [ |
UiO-67-Pt(2.7wt%) | 170 | 0.8 | — | 6 | 1.5 | 19 | — | [ |
Rh/In2O3 | 250 | 5.0 | 21000 | 4 | 4.0 | 82.0 | 188.2 | [ |
Rh/In2O3 | 275 | 5.0 | 21000 | 4 | 9.3 | 72.6 | 385.3 | [ |
Rh/In2O3 | 300 | 5.0 | 21000 | 4 | 17.1 | 56.1 | 544.8 | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | C2+醇 选择性a/% | C2+醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
0.43%Pd2Cu NPs/P25 | 200 | 3.2 | — | 3 | — | 78.7(乙醇) b | 13.5 (mmol•g−1•h−1) | [ |
1.23%Pd2Cu NPs/P25 | 200 | 3.2 | — | 3 | — | 92.0(乙醇) b | 41.5 (mmol•g−1•h−1) | [ |
2.45%Pd2Cu NPs/P25 | 200 | 3.2 | — | 3 | — | 96.1(乙醇) b | 86.7 (mmol•g−1•h−1) | [ |
4.91%Pd2Cu NPs/P25 | 200 | 3.2 | — | 3 | — | 95.9(乙醇) b | 103.5 (mmol•g−1•h−1) | [ |
RhFeLi/TiO2 NRs-400 ̊C | 250 | 3.0 | 6000 | 3 | 21.4 | 14.6 | — | [ |
RhFeLi/TiO2 NRs-500 ̊C | 250 | 3.0 | 6000 | 3 | 15.7 | 31.3 | — | [ |
RhFeLi/TiO2 NRs-600 ̊C | 250 | 3.0 | 6000 | 3 | 6.6 | 12.6 | — | [ |
RhFeLi/TiO2 Com | 250 | 3.0 | 6000 | 3 | 4.5 | 15.7 | — | [ |
Rh1/CeTiOx | 250 | 3.0 | — | 3 | 6.32 | 99.1 | 5.75 (mmol•gRh−1•h−1) | [ |
Au/TiO2 | 200 | 6.0 | — | 3 | — | — | 282.5 (mmol•gAu−1•h−1) | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | C2+醇 选择性a/% | C2+醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
0.43%Pd2Cu NPs/P25 | 200 | 3.2 | — | 3 | — | 78.7(乙醇) b | 13.5 (mmol•g−1•h−1) | [ |
1.23%Pd2Cu NPs/P25 | 200 | 3.2 | — | 3 | — | 92.0(乙醇) b | 41.5 (mmol•g−1•h−1) | [ |
2.45%Pd2Cu NPs/P25 | 200 | 3.2 | — | 3 | — | 96.1(乙醇) b | 86.7 (mmol•g−1•h−1) | [ |
4.91%Pd2Cu NPs/P25 | 200 | 3.2 | — | 3 | — | 95.9(乙醇) b | 103.5 (mmol•g−1•h−1) | [ |
RhFeLi/TiO2 NRs-400 ̊C | 250 | 3.0 | 6000 | 3 | 21.4 | 14.6 | — | [ |
RhFeLi/TiO2 NRs-500 ̊C | 250 | 3.0 | 6000 | 3 | 15.7 | 31.3 | — | [ |
RhFeLi/TiO2 NRs-600 ̊C | 250 | 3.0 | 6000 | 3 | 6.6 | 12.6 | — | [ |
RhFeLi/TiO2 Com | 250 | 3.0 | 6000 | 3 | 4.5 | 15.7 | — | [ |
Rh1/CeTiOx | 250 | 3.0 | — | 3 | 6.32 | 99.1 | 5.75 (mmol•gRh−1•h−1) | [ |
Au/TiO2 | 200 | 6.0 | — | 3 | — | — | 282.5 (mmol•gAu−1•h−1) | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | C2+醇 选择性b/% | C2+OH/ROH (w/%) | 参考文献 |
---|---|---|---|---|---|---|---|---|
CoAlOx-600 | 140 | 4.0 | — | 3 | — | 92.1 | 95.6 | [ |
Mo/SiO2 | 250 | 1.6 | — | 1 | — | 34 | 70.6 | [ |
CoMoS | 340 | 10.4 | 0.43 (kg•kgcat−1•h−1) | 3 | 32 | 6.0 a | — | [ |
Mo1Co1K0.6 | 320 | 5.0 | 3000 | 3 | 23.5 | 8.9 | 11 | [ |
Mo1Co1K0.6-AC-18% | 320 | 5.0 | 3000 | 3 | 8.1 | 12.9 | 27 | [ |
Mo1Co1K0.6-AC-9% | 320 | 5.0 | 3000 | 3 | 8.1 | 1.2 | 6 | [ |
Mo1Co1K0.6-AC-9% | 320 | 5.0 | 3000 | 3 | 23.4 | 5.8 | 8 | [ |
Mo1Co0.3K0.9-AC-12% | 320 | 5.0 | 3000 | 3 | 23.7 | 10.0 | 12 | [ |
Mo1Co0.3K0.9-AC-15% | 320 | 5.0 | 3000 | 3 | 24.2 | 6.7 | 8 | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | C2+醇 选择性b/% | C2+OH/ROH (w/%) | 参考文献 |
---|---|---|---|---|---|---|---|---|
CoAlOx-600 | 140 | 4.0 | — | 3 | — | 92.1 | 95.6 | [ |
Mo/SiO2 | 250 | 1.6 | — | 1 | — | 34 | 70.6 | [ |
CoMoS | 340 | 10.4 | 0.43 (kg•kgcat−1•h−1) | 3 | 32 | 6.0 a | — | [ |
Mo1Co1K0.6 | 320 | 5.0 | 3000 | 3 | 23.5 | 8.9 | 11 | [ |
Mo1Co1K0.6-AC-18% | 320 | 5.0 | 3000 | 3 | 8.1 | 12.9 | 27 | [ |
Mo1Co1K0.6-AC-9% | 320 | 5.0 | 3000 | 3 | 8.1 | 1.2 | 6 | [ |
Mo1Co1K0.6-AC-9% | 320 | 5.0 | 3000 | 3 | 23.4 | 5.8 | 8 | [ |
Mo1Co0.3K0.9-AC-12% | 320 | 5.0 | 3000 | 3 | 23.7 | 10.0 | 12 | [ |
Mo1Co0.3K0.9-AC-15% | 320 | 5.0 | 3000 | 3 | 24.2 | 6.7 | 8 | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | 甲醇 选择性a/% | 甲醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
In2O3/ZrO2 | 300 | 5.0 | 16000 | 4 | — | 100 | — | [ |
In2O3/m-ZrO2 | 280 | 5.0 | 24000 | 4 | 4.8 | 84 | 270 | [ |
In2O3/t-ZrO2 | 280 | 5.0 | 24000 | 4 | 0.5 | 82 | 40 | [ |
In2O3/Al2O3 | 280 | 5.0 | 24000 | 4 | 0.5 | 80 | 40 | [ |
In2O3/CeO2 | 280 | 5.0 | 24000 | 4 | 0.4 | 82 | 30 | [ |
In2O3/Al2O3/Al-fiber | 325 | 4.0 | 21600 | 3 | 4.4 | 67.6 | 200 | [ |
In2O3-IWI/Al2O3/Al-fiber | 325 | 4.0 | 21600 | 3 | 4.3 | 36.8 | 110 | [ |
In0.1/ZrO2 | 280 | 5.0 | 24000 | 4 | 1.1 | 21.3 | 14 | [ |
In0.25/ZrO2 | 280 | 5.0 | 24000 | 4 | 1.2 | 27.0 | 17 | [ |
In0.5/ZrO2 | 280 | 5.0 | 24000 | 4 | 1.9 | 38.7 | 42 | [ |
In1/ZrO2 | 280 | 5.0 | 24000 | 4 | 2.0 | 49.3 | 50 | [ |
In2.5/ZrO2 | 280 | 5.0 | 24000 | 4 | 2.5 | 60.0 | 87 | [ |
In5/ZrO2 | 280 | 5.0 | 24000 | 4 | 1.8 | 68.2 | 71 | [ |
In10/ZrO2 | 280 | 5.0 | 24000 | 4 | 1.4 | 66.0 | 56 | [ |
c-In2O3-S | 300 | 5.0 | 9000 | 3 | 12.0 | 71.9 | 265.6 | [ |
h-In2O3-R | 300 | 5.0 | 20000 | 3 | 5.1 | 95.1 | 332.8 | [ |
h-In2O3-R | 300 | 5.0 | 9000 | 6 | 17.6 | 92.4 | — | [ |
h-In2O3/Pd | 235 | 3.0 | 19200 | 3 | — | 100 | 170 | [ |
h-In2O3/Pd | 295 | 3.0 | 19200 | 3 | — | 72.4 | 530 | [ |
h-In2O3/Pd | 295 | 3.0 | 24000 | 3 | — | 74 | 570 | [ |
In2O3 | 300 | 5.0 | 21000 | 4 | 8.9 | 61 | 326 | [ |
Ir/In2O3-1 | 300 | 5.0 | 21000 | 4 | 11.6 | 73 | 512 | [ |
Ir/In2O3-5 | 300 | 5.0 | 21000 | 4 | 14.2 | 71 | 608 | [ |
Ir/In2O3-10 | 300 | 5.0 | 21000 | 4 | 17.7 | 71 | 765 | [ |
Pt/film/In2O3 | 30 | 0.1 | — | 3 | 37.0 | 62.6 | 354.88 | [ |
Cu0.25-In0.75-Zr0.5-O | 250 | 2.5 | 18000 | 3 | 1.48 | 79.7 | — | [ |
Au/ZrO2 | 300 | 5.0 | 21000 | 4 | 14.8 | 70.1 | 590 | [ |
Au/In2O3-ZrO2 | 300 | 5.0 | 21000 | 4 | 26.0 | 13.3 | 200 | [ |
In2O3/SiO2 | 300 | 5.0 | 7500 | 4 | — | 24 | — | [ |
In:Pd(2:1)/SiO2 | 300 | 5.0 | 7500 | 4 | — | 61 | — | [ |
In:Pd(1:1)/SiO2 | 300 | 5.0 | 7500 | 4 | — | 42 | — | [ |
In:Pd(1:2)/SiO2 | 300 | 5.0 | 7500 | 4 | — | 23 | — | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | 甲醇 选择性a/% | 甲醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
In2O3/ZrO2 | 300 | 5.0 | 16000 | 4 | — | 100 | — | [ |
In2O3/m-ZrO2 | 280 | 5.0 | 24000 | 4 | 4.8 | 84 | 270 | [ |
In2O3/t-ZrO2 | 280 | 5.0 | 24000 | 4 | 0.5 | 82 | 40 | [ |
In2O3/Al2O3 | 280 | 5.0 | 24000 | 4 | 0.5 | 80 | 40 | [ |
In2O3/CeO2 | 280 | 5.0 | 24000 | 4 | 0.4 | 82 | 30 | [ |
In2O3/Al2O3/Al-fiber | 325 | 4.0 | 21600 | 3 | 4.4 | 67.6 | 200 | [ |
In2O3-IWI/Al2O3/Al-fiber | 325 | 4.0 | 21600 | 3 | 4.3 | 36.8 | 110 | [ |
In0.1/ZrO2 | 280 | 5.0 | 24000 | 4 | 1.1 | 21.3 | 14 | [ |
In0.25/ZrO2 | 280 | 5.0 | 24000 | 4 | 1.2 | 27.0 | 17 | [ |
In0.5/ZrO2 | 280 | 5.0 | 24000 | 4 | 1.9 | 38.7 | 42 | [ |
In1/ZrO2 | 280 | 5.0 | 24000 | 4 | 2.0 | 49.3 | 50 | [ |
In2.5/ZrO2 | 280 | 5.0 | 24000 | 4 | 2.5 | 60.0 | 87 | [ |
In5/ZrO2 | 280 | 5.0 | 24000 | 4 | 1.8 | 68.2 | 71 | [ |
In10/ZrO2 | 280 | 5.0 | 24000 | 4 | 1.4 | 66.0 | 56 | [ |
c-In2O3-S | 300 | 5.0 | 9000 | 3 | 12.0 | 71.9 | 265.6 | [ |
h-In2O3-R | 300 | 5.0 | 20000 | 3 | 5.1 | 95.1 | 332.8 | [ |
h-In2O3-R | 300 | 5.0 | 9000 | 6 | 17.6 | 92.4 | — | [ |
h-In2O3/Pd | 235 | 3.0 | 19200 | 3 | — | 100 | 170 | [ |
h-In2O3/Pd | 295 | 3.0 | 19200 | 3 | — | 72.4 | 530 | [ |
h-In2O3/Pd | 295 | 3.0 | 24000 | 3 | — | 74 | 570 | [ |
In2O3 | 300 | 5.0 | 21000 | 4 | 8.9 | 61 | 326 | [ |
Ir/In2O3-1 | 300 | 5.0 | 21000 | 4 | 11.6 | 73 | 512 | [ |
Ir/In2O3-5 | 300 | 5.0 | 21000 | 4 | 14.2 | 71 | 608 | [ |
Ir/In2O3-10 | 300 | 5.0 | 21000 | 4 | 17.7 | 71 | 765 | [ |
Pt/film/In2O3 | 30 | 0.1 | — | 3 | 37.0 | 62.6 | 354.88 | [ |
Cu0.25-In0.75-Zr0.5-O | 250 | 2.5 | 18000 | 3 | 1.48 | 79.7 | — | [ |
Au/ZrO2 | 300 | 5.0 | 21000 | 4 | 14.8 | 70.1 | 590 | [ |
Au/In2O3-ZrO2 | 300 | 5.0 | 21000 | 4 | 26.0 | 13.3 | 200 | [ |
In2O3/SiO2 | 300 | 5.0 | 7500 | 4 | — | 24 | — | [ |
In:Pd(2:1)/SiO2 | 300 | 5.0 | 7500 | 4 | — | 61 | — | [ |
In:Pd(1:1)/SiO2 | 300 | 5.0 | 7500 | 4 | — | 42 | — | [ |
In:Pd(1:2)/SiO2 | 300 | 5.0 | 7500 | 4 | — | 23 | — | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | 甲醇 选择性a/% | 甲醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
13%ZnO-ZrO2 | 300 | 2.0 | 24000 | 3 | 3.4 | 87 | 248 | [ |
11.5%CdZrOx | 300 | 2.0 | 24000 | 3 | 5.5 | ≈80 | — | [ |
11.5%GaZrOx | 300 | 2.0 | 24000 | 3 | 2.4 | ≈80 | — | [ |
CP-PdZnZr | 320 | 5.0 | 30000 | 3 | 8.1 | 87.5 | 735 | [ |
3Al-C-ZnO-ZrO2 | 320 | 3.0 | — | — | 11.4 | 81.3 | — | [ |
3Cr-C-ZnO-ZrO2 | 320 | 3.0 | — | — | 10.7 | 73.2 | — | [ |
3Fe-C-ZnO-ZrO2 | 320 | 3.0 | — | — | 10.8 | 77.0 | — | [ |
3Mg-C-ZnO-ZrO2 | 320 | 3.0 | — | — | 12.9 | 81.5 | — | [ |
Rh/ZrO2 | 300 | 5.0 | 21000 (cm3•gcat-1•h-1) | — | 65.5 | 0.2 | 6 | [ |
Rh/In2O3-ZrO2 | 275 | 5.0 | 21000 (cm3•gcat−1•h−1) | 11.9 | 80.9 | 550 | [ | |
Rh/In2O3-ZrO2 | 300 | 5.0 | 21000 (cm3•gcat−1•h−1) | — | 18.1 | 66.5 | 684 | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | 甲醇 选择性a/% | 甲醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
13%ZnO-ZrO2 | 300 | 2.0 | 24000 | 3 | 3.4 | 87 | 248 | [ |
11.5%CdZrOx | 300 | 2.0 | 24000 | 3 | 5.5 | ≈80 | — | [ |
11.5%GaZrOx | 300 | 2.0 | 24000 | 3 | 2.4 | ≈80 | — | [ |
CP-PdZnZr | 320 | 5.0 | 30000 | 3 | 8.1 | 87.5 | 735 | [ |
3Al-C-ZnO-ZrO2 | 320 | 3.0 | — | — | 11.4 | 81.3 | — | [ |
3Cr-C-ZnO-ZrO2 | 320 | 3.0 | — | — | 10.7 | 73.2 | — | [ |
3Fe-C-ZnO-ZrO2 | 320 | 3.0 | — | — | 10.8 | 77.0 | — | [ |
3Mg-C-ZnO-ZrO2 | 320 | 3.0 | — | — | 12.9 | 81.5 | — | [ |
Rh/ZrO2 | 300 | 5.0 | 21000 (cm3•gcat-1•h-1) | — | 65.5 | 0.2 | 6 | [ |
Rh/In2O3-ZrO2 | 275 | 5.0 | 21000 (cm3•gcat−1•h−1) | 11.9 | 80.9 | 550 | [ | |
Rh/In2O3-ZrO2 | 300 | 5.0 | 21000 (cm3•gcat−1•h−1) | — | 18.1 | 66.5 | 684 | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | 甲醇 选择性a/% | 甲醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
FL-MoS2 | 180 | 5.0 | 3000 | 3 | 12.5 | 94.3 | — | [ |
FL-MoS2 | 180 | 5.0 | 15000 | 3 | 2.5 | 96.4 | 130 | [ |
FL-MoS2 | 240 | 5.0 | 15000 | 3 | 11.0 | 81.4 | 490 | [ |
FL-MoS2 | 260 | 5.0 | 15000 | 3 | 15.3 | 70.1 | 600 | [ |
h-MoS2/ZnS | 240 | 5.0 | 15000 | 4 | 7.2 | 74.6 | 220 | [ |
h-MoS2/ZnS | 260 | 5.0 | 15000 | 4 | 9.0 | 67.3 | 250 | [ |
MoS2 | 180 | 4.0 | 1200 | — | 0.3 | 54 | 0.64 | [ |
MoSx/NaZSM-5 | 180 | 4.0 | 1200 | — | 0.4 | 63 | 1 | [ |
Mo3S4@NaZSM-5 | 180 | 4.0 | 1200 | 10.2 | 98 | 39.5 | [ | |
β-Mo2C | 220 | 3.0 | 7500 | 3 | 8.4 | 9.7 | 0.2 | [ |
Mo2C@NSC-700 | 220 | 3.0 | 7500 | 3 | 16.0 | 62.0 | 266 | [ |
Mo2C@NSC-800 | 220 | 3.0 | 7500 | 3 | 16.7 | 90.5 | 405 | [ |
Mo2C@NSC-900 | 220 | 3.0 | 7500 | 3 | 17.0 | 84.2 | 383 | [ |
β-Mo2C | 150 | 2.0 | 7200 | 3 | 3.25 | 60 | — | [ |
Cu/Mo2C | 150 | 2.0 | 7200 | 3 | 5 | 70 | — | [ |
Cs/Mo2C | 150 | 2.0 | 7200 | 3 | 3 | 50 | — | [ |
Cu/Cs-Mo2C | 150 | 2.0 | 7200 | 3 | 4 | 55 | — | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | 甲醇 选择性a/% | 甲醇STY/ (mg•gcat−1•h−1) | 参考文献 |
---|---|---|---|---|---|---|---|---|
FL-MoS2 | 180 | 5.0 | 3000 | 3 | 12.5 | 94.3 | — | [ |
FL-MoS2 | 180 | 5.0 | 15000 | 3 | 2.5 | 96.4 | 130 | [ |
FL-MoS2 | 240 | 5.0 | 15000 | 3 | 11.0 | 81.4 | 490 | [ |
FL-MoS2 | 260 | 5.0 | 15000 | 3 | 15.3 | 70.1 | 600 | [ |
h-MoS2/ZnS | 240 | 5.0 | 15000 | 4 | 7.2 | 74.6 | 220 | [ |
h-MoS2/ZnS | 260 | 5.0 | 15000 | 4 | 9.0 | 67.3 | 250 | [ |
MoS2 | 180 | 4.0 | 1200 | — | 0.3 | 54 | 0.64 | [ |
MoSx/NaZSM-5 | 180 | 4.0 | 1200 | — | 0.4 | 63 | 1 | [ |
Mo3S4@NaZSM-5 | 180 | 4.0 | 1200 | 10.2 | 98 | 39.5 | [ | |
β-Mo2C | 220 | 3.0 | 7500 | 3 | 8.4 | 9.7 | 0.2 | [ |
Mo2C@NSC-700 | 220 | 3.0 | 7500 | 3 | 16.0 | 62.0 | 266 | [ |
Mo2C@NSC-800 | 220 | 3.0 | 7500 | 3 | 16.7 | 90.5 | 405 | [ |
Mo2C@NSC-900 | 220 | 3.0 | 7500 | 3 | 17.0 | 84.2 | 383 | [ |
β-Mo2C | 150 | 2.0 | 7200 | 3 | 3.25 | 60 | — | [ |
Cu/Mo2C | 150 | 2.0 | 7200 | 3 | 5 | 70 | — | [ |
Cs/Mo2C | 150 | 2.0 | 7200 | 3 | 3 | 50 | — | [ |
Cu/Cs-Mo2C | 150 | 2.0 | 7200 | 3 | 4 | 55 | — | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | C2+醇 选择性a/% | C2+OH/ROH (w/%) | 参考文献 |
---|---|---|---|---|---|---|---|---|
Na-Co/SiO2 | 250 | 5.0 | 4000 | 3 | 18.82 | 9.54(总醇) | 62.81 | [ |
Na-Co/Si3N4 | 250 | 5.0 | 4000 | 3 | 17.75 | 9.19(总醇) | 62.43 | [ |
0.5%Na-Co/SiO2 | 250 | 5.0 | 6000 | 3 | 40.0 | 0.1(总醇) | — | [ |
1%Na-Co/SiO2 | 250 | 5.0 | 6000 | 3 | 33.7 | 3.4(总醇) | — | [ |
2%Na-Co/SiO2 | 250 | 5.0 | 6000 | 3 | 21.5 | 12.5(总醇) | — | [ |
5%Na-Co/SiO2 | 250 | 5.0 | 6000 | 3 | 16.5 | 9.9(总醇) | — | [ |
Mo2C | 200 | 4.0 | — | 3 | — | 16 | [ | |
Co/Mo2C | 200 | 4.0 | — | 3 | — | 25 | — | [ |
Pd/Mo2C | 200 | 4.0 | — | 3 | — | 11 | — | [ |
Cu/Mo2C | 200 | 4.0 | — | 3 | — | 14 | — | [ |
Fe/Mo2C | 200 | 4.0 | — | 3 | — | 16 | — | [ |
催化剂 | 温度/ ℃ | 压力/ MPa | GHSV/ (mL•gcat−1•h−1) | H2/CO2 | CO2 转化率/% | C2+醇 选择性a/% | C2+OH/ROH (w/%) | 参考文献 |
---|---|---|---|---|---|---|---|---|
Na-Co/SiO2 | 250 | 5.0 | 4000 | 3 | 18.82 | 9.54(总醇) | 62.81 | [ |
Na-Co/Si3N4 | 250 | 5.0 | 4000 | 3 | 17.75 | 9.19(总醇) | 62.43 | [ |
0.5%Na-Co/SiO2 | 250 | 5.0 | 6000 | 3 | 40.0 | 0.1(总醇) | — | [ |
1%Na-Co/SiO2 | 250 | 5.0 | 6000 | 3 | 33.7 | 3.4(总醇) | — | [ |
2%Na-Co/SiO2 | 250 | 5.0 | 6000 | 3 | 21.5 | 12.5(总醇) | — | [ |
5%Na-Co/SiO2 | 250 | 5.0 | 6000 | 3 | 16.5 | 9.9(总醇) | — | [ |
Mo2C | 200 | 4.0 | — | 3 | — | 16 | [ | |
Co/Mo2C | 200 | 4.0 | — | 3 | — | 25 | — | [ |
Pd/Mo2C | 200 | 4.0 | — | 3 | — | 11 | — | [ |
Cu/Mo2C | 200 | 4.0 | — | 3 | — | 14 | — | [ |
Fe/Mo2C | 200 | 4.0 | — | 3 | — | 16 | — | [ |
[1] |
Yan J.; Zhang Z. Appl. Energ. 2019, 235, 1289.
doi: 10.1016/j.apenergy.2018.11.019 |
[2] |
An P.; Zhang Q.; Yang Z.; Wu J.; Zhang J.; Wang Y.; Li Y.; Jiang G. Acta Chim. Sinica 2022, 80, 1629. (in Chinese)
doi: 10.6023/A22080362 |
( 安攀, 张庆慧, 杨状, 武佳星, 张佳颖, 王雅君, 李宇明, 姜桂元, 化学学报, 2022, 80, 1629.)
|
|
[3] |
Zhu J.; Cannizzaro F.; Liu L.; Zhang H.; Kosinov N.; Filot I. A. W.; Rabeah J.; Brueckner A.; Hensen E. J. M. ACS Catal. 2021, 11, 11371.
doi: 10.1021/acscatal.1c03170 |
[4] |
Pandey P. H.; Pawar, H. S. J. CO2. Util. 2020, 41, 101267.
|
[5] |
Xu Y.; Zhai P.; Deng Y.; Xie J.; Liu X.; Wang S.; Ma D. Angew. Chem. Int. Ed. 2020, 59, 21736.
doi: 10.1002/anie.v59.48 |
[6] |
Tian H.; Jiao J.; Zha F.; Guo X.; Tang X.; Chang Y.; Chen H. Catal. Sci. Technol. 2022, 12, 799.
doi: 10.1039/D1CY01570B |
[7] |
Gao P.; Zhang L.; Li S.; Zhou Z.; Sun Y. ACS Cent. Sci. 2020, 6, 1657.
doi: 10.1021/acscentsci.0c00976 |
[8] |
Li W. H.; Wang H. Z.; Jiang X.; Zhu J.; Liu Z. M.; Guo X. W.; Song C. S. RSC Adv. 2018, 8, 7651.
doi: 10.1039/C7RA13546G |
[9] |
Fujitani T.; Nakamura I.; Uchijima T.; Nakamura J. Surf. Sci. 1997, 383, 285.
doi: 10.1016/S0039-6028(97)00192-1 |
[10] |
Collins S. E.; Baltanás M. A.; Bonivardi A. L. J. Catal. 2004, 226, 410.
doi: 10.1016/j.jcat.2004.06.012 |
[11] |
Nie X.; Jiang X.; Wang H.; Luo W.; Janik M. J.; Chen Y.; Guo X.; Song C. ACS Catal. 2018, 8, 4873.
doi: 10.1021/acscatal.7b04150 |
[12] |
Zhao Y.; Yang Y.; Mims C.; Peden Charles H. F.; Li J.; Mei D. J. Catal. 2011, 281, 199.
doi: 10.1016/j.jcat.2011.04.012 |
[13] |
Sun K.; Rui N.; Shen C.; Liu C.-j. J. Phys. Chem. C 2021, 125, 10926.
doi: 10.1021/acs.jpcc.1c00638 |
[14] |
Brix F.; Desbuis V.; Piccolo L.; Gaudry E. J. Phys. Chem. Lett. 2020, 11, 7672.
doi: 10.1021/acs.jpclett.0c02011 |
[15] |
Li Y.; Chan S. H.; Sun Q. Nanoscale. 2015, 7, 8663.
doi: 10.1039/C5NR00092K |
[16] |
Niu J.; Liu H.; Jin Y.; Fan B.; Qi W.; Ran J. Int. J. Hydrog. Energy. 2022, 47, 9183.
doi: 10.1016/j.ijhydene.2022.01.021 |
[17] |
Zhu J.; Su Y.; Chai J.; Muravev V.; Kosinov N.; Hensen E. J. M. ACS Catal. 2020, 10, 11532.
doi: 10.1021/acscatal.0c02909 |
[18] |
Tang C.; Tang S.; Sha F.; Han Z.; Feng Z.; Wang J.; Li C. J. Phys. Chem. C 2022, 126, 10399.
doi: 10.1021/acs.jpcc.2c02995 |
[19] |
Gutterod E. S.; Lazzarini A.; Fjermestad T.; Kaur G.; Manzoli M.; Bordiga S.; Svelle S.; Lillerud K. P.; Skulason E.; Oien-Odegaard S.; Nova A.; Olsbye U. J. Am. Chem. Soc. 2020, 142, 999.
doi: 10.1021/jacs.9b10873 |
[20] |
Rasmussen P. B.; Kazuta M.; Chorkendorff I. Surf. Sci. 1994, 318, 267.
doi: 10.1016/0039-6028(94)90101-5 |
[21] |
Liao F.; Wu X.-P.; Zheng J.; Li M. M.-J.; Kroner A.; Zeng Z.; Hong X.; Yuan Y.; Gong X.-Q.; Tsang S. C. E. Green. Chem. 2017, 19, 270.
doi: 10.1039/C6GC02366E |
[22] |
Nakamura I.; Fujitani T.; Uchijima T.; Nakamura J. Surf. Sci. 1998, 400, 387.
doi: 10.1016/S0039-6028(97)00899-6 |
[23] |
Yang Y.; White M. G.; Liu P. J. Phys. Chem. C 2012, 116, 248.
doi: 10.1021/jp208448c |
[24] |
Hong Q.-J.; Liu Z.-P. Surf. Sci. 2010, 604, 1869.
doi: 10.1016/j.susc.2010.07.018 |
[25] |
Wang J.; Li G.; Li Z.; Tang C.; Feng Z.; An H.; Liu H.; Liu T.; Li C. Sci. Adv. 2017, 3, e1701290.
doi: 10.1126/sciadv.1701290 |
[26] |
Higham M. D.; Quesne M. G.; Catlow C. R. A. Dalton. T. 2020, 49, 8478.
doi: 10.1039/D0DT00754D |
[27] |
Wang J.; Meeprasert J.; Han Z.; Wang H.; Feng Z.; Tang C.; Sha F.; Tang S.; Li G.; Pidko E. A.; Li C. Chinese. J. Catal. 2022, 43, 761.
doi: 10.1016/S1872-2067(21)63907-4 |
[28] |
Cai Z.; Huang M.; Dai J.; Zhan G.; Sun F.-l.; Zhuang G.-L.; Wang Y.; Tian P.; Chen B.; Ullah S.; Huang J.; Li Q. ACS Catal. 2022, 12, 709.
doi: 10.1021/acscatal.1c03630 |
[29] |
Dang S.; Qin B.; Yang Y.; Wang H.; Cai J.; Han Y.; Li S.; Gao P.; Sun Y. Sci. Adv. 2020, 6, eaaz2060.
|
[30] |
Ahmad K.; Upadhyayula S. Int. J. Hydrog. Energy. 2020, 45, 1140.
doi: 10.1016/j.ijhydene.2019.10.156 |
[31] |
Kattel S.; Yan B.; Yang Y.; Chen J. G.; Liu P. J. Am. Chem. Soc. 2016, 138, 12440.
doi: 10.1021/jacs.6b05791 |
[32] |
Gaikwad R.; Bansode A.; Urakawa A. J. Catal. 2016, 343, 127.
doi: 10.1016/j.jcat.2016.02.005 |
[33] |
Shen C.; Bao Q.; Xue W.; Sun K.; Zhang Z.; Jia X.; Mei D.; Liu C.-j. J. Energy. Chem. 2022, 65, 623.
doi: 10.1016/j.jechem.2021.06.039 |
[34] |
Graciani J.; Mudiyanselage K.; Xu F.; Baber A. E.; Evans J.; Senanayake S. D.; Stacchiola D. J.; Liu P.; Hrbek J.; Fernandez Sanz J.; Rodriguez J. A. Science. 2014, 345, 546.
doi: 10.1126/science.1253057 |
[35] |
Yang Y.; Mei D.; Peden C. H. F.; Campbell C. T.; Mims C. A. ACS Catal. 2015, 5, 7328.
doi: 10.1021/acscatal.5b02060 |
[36] |
Tang Q.; Shen Z.; Huang L.; He T.; Adidharma H.; Russell A. G.; Fan M. Phys. Chem. Chem. Phys. 2017, 19, 18539.
doi: 10.1039/C7CP03231E |
[37] |
Liu G.; Liu P.; Meng D.; Zhao T.; Qian X.; He Q.; Guo X.; Qi J.; Peng L.; Xue N.; Zhu Y.; Ma J.; Wang Q.; Liu X.; Chen L.; Ding W. Nat. Commun. 2023, 14, 513.
doi: 10.1038/s41467-023-36259-9 |
[38] |
Xu D.; Wang Y.; Ding M.; Hong X.; Liu G.; Tsang S. C. E. Chem. 2021, 7, 849.
doi: 10.1016/j.chempr.2020.10.019 |
[39] |
Zheng J.-n.; An K.; Wang J.-m.; Li J.; Liu Y. J. Fuel. Chem. Technol. 2019, 47, 697.
doi: 10.1016/S1872-5813(19)30031-3 |
[40] |
Kusama H.; Okabe K.; Sayama K.; Arakawa H. Catal. Today 1996, 28, 261.
doi: 10.1016/0920-5861(95)00246-4 |
[41] |
Liu S.; Yang C.; Zha S.; Sharapa D.; Studt F.; Zhao Z. J.; Gong J. Angew. Chem. Int. Ed. 2022, 61, e202109027.
doi: 10.1002/anie.v61.2 |
[42] |
Xu D.; Ding M.; Hong X.; Liu G.; Tsang S. C. E. ACS Catal. 2020, 10, 5250.
doi: 10.1021/acscatal.0c01184 |
[43] |
Wang L.; Wang L.; Zhang J.; Liu X.; Wang H.; Zhang W.; Yang Q.; Ma J.; Dong X.; Yoo S. J.; Kim J. G.; Meng X.; Xiao F. S. Angew. Chem. Int. Ed. 2018, 57, 6104.
doi: 10.1002/anie.v57.21 |
[44] |
Wang X.; Ramírez P. J.; Liao W.; Rodriguez J. A.; Liu P. J. Am. Chem. Soc. 2021, 143, 13103.
doi: 10.1021/jacs.1c03940 |
[45] |
He Z.; Qian Q.; Ma J.; Meng Q.; Zhou H.; Song J.; Liu Z.; Han B. Angew. Chem. Int. Ed. 2016, 55, 737.
doi: 10.1002/anie.v55.2 |
[46] |
Ding L.; Shi T.; Gu J.; Cui Y.; Zhang Z.; Yang C.; Chen T.; Lin M.; Wang P.; Xue N.; Peng L.; Guo X.; Zhu Y.; Chen Z.; Ding W. Chem. 2020, 6, 2673.
doi: 10.1016/j.chempr.2020.07.001 |
[47] |
Zhong J.; Yang X.; Wu Z.; Liang B.; Huang Y.; Zhang T. Chem. Soc. Rev. 2020, 49, 1385.
doi: 10.1039/C9CS00614A |
[48] |
Bagger A.; Ju W.; Varela A. S.; Strasser P.; Rossmeisl J. Chemphyschem. 2017, 18, 3266.
doi: 10.1002/cphc.v18.22 |
[49] |
Lei H.; Hou Z.; Xie J. Fuel. 2016, 164, 191.
doi: 10.1016/j.fuel.2015.09.082 |
[50] |
Yu J.; Yang M.; Zhang J.; Ge Q.; Zimina A.; Pruessmann T.; Zheng L.; Grunwaldt J.-D.; Sun J. ACS Catal. 2020, 10, 14694.
doi: 10.1021/acscatal.0c04371 |
[51] |
Dasireddy V. D. B. C.; Likozar B. Renew. Energ. 2019, 140, 452.
doi: 10.1016/j.renene.2019.03.073 |
[52] |
Li M. M. J.; Chen C.; Ayvalı T.; Suo H.; Zheng J.; Teixeira I. F.; Ye L.; Zou H.; O’Hare D.; Tsang S. C. E. ACS Catal. 2018, 8, 4390.
doi: 10.1021/acscatal.8b00474 |
[53] |
Le-Phuc N.; Van Tran T.; Thuy P. N.; Nguyen L. H.; Trinh T. T. React. Kinet. Mech. Cat. 2017, 124, 171.
doi: 10.1007/s11144-017-1323-7 |
[54] |
Stangeland K.; Chamssine F.; Fu W.; Huang Z.; Duan X.; Yu, Z. J. CO2. Util. 2021, 50, 101609.
|
[55] |
Hu X.; Zhao C.; Guan Q.; Hu X.; Li W.; Chen J. Inorg. Chem. Front. 2019, 6, 1799.
doi: 10.1039/C9QI00397E |
[56] |
Arena F.; Mezzatesta G.; Zafarana G.; Trunfio G.; Frusteri F.; Spadaro L. Catal. Today 2013, 210, 39.
doi: 10.1016/j.cattod.2013.02.016 |
[57] |
Li H.; Wang L.; Gao X.; Xiao F.-S. Ind. Eng. Chem. Res. 2022, 61, 10446.
doi: 10.1021/acs.iecr.2c00172 |
[58] |
Guo Q.; Li S.; Li J.; Hu Y.; Duanmu C. ACS Appl. Energ. Mater. 2021, 4, 8311.
doi: 10.1021/acsaem.1c01542 |
[59] |
Zhao H.; Yu R.; Ma S.; Xu K.; Chen Y.; Jiang K.; Fang Y.; Zhu C.; Liu X.; Tang Y.; Wu L.; Wu Y.; Jiang Q.; He P.; Liu Z.; Tan L. Nat. Catal. 2022, 5, 818.
doi: 10.1038/s41929-022-00840-0 |
[60] |
Jangam A.; Hongmanorom P.; Ming H.; Jeffry Poerjoto A.; Xi S.; Borgna A.; Kawi S. ACS Appl. Energ. Mater. 2021, 4, 12149.
doi: 10.1021/acsaem.1c01734 |
[61] |
Zhou H.; Chen Z.; López A. V.; López E. D.; Lam E.; Tsoukalou A.; Willinger E.; Kuznetsov D. A.; Mance D.; Kierzkowska A.; Donat F.; Abdala P. M.; Comas-Vives A.; Copéret C.; Fedorov A.; Müller C. R. Nat. Catal. 2021, 4, 860.
doi: 10.1038/s41929-021-00684-0 |
[62] |
Din I. U.; Alotaibi M. A.; Alharthi A. I.; Al-Shalwi M. N.; Alshehri F. Fuel. 2022, 330, 125643.
doi: 10.1016/j.fuel.2022.125643 |
[63] |
Han C.; Zhang H.; Li C.; Huang H.; Wang S.; Wang P.; Li J. Appl. Catal. A-Gen. 2022, 643, 118805.
doi: 10.1016/j.apcata.2022.118805 |
[64] |
An B.; Zhang J.; Cheng K.; Ji P.; Wang C.; Lin W. J. Am. Chem. Soc. 2017, 139, 3834.
doi: 10.1021/jacs.7b00058 |
[65] |
Ye H.; Na W.; Gao W.; Wang H. Energy Technol. 2020, 8, 2000194.
doi: 10.1002/ente.v8.6 |
[66] |
Song H.-t.; Fazeli A.; Kim H. D.; Eslami A. A.; Noh Y. S.; Saeidabad N. G.; Moon D. J. Fuel. 2021, 283, 118987.
doi: 10.1016/j.fuel.2020.118987 |
[67] |
Ay S.; Ozdemir M.; Melikoglu M. Chem. Eng. Res. Des. 2021, 175, 146.
doi: 10.1016/j.cherd.2021.08.039 |
[68] |
Cai W.; Chen Q.; Wang F.; Li Z.; Yu H.; Zhang S.; Cui L.; Li C. Catal. Lett. 2019, 149, 2508.
doi: 10.1007/s10562-019-02825-4 |
[69] |
Li S.; Guo H.; Luo C.; Zhang H.; Xiong L.; Chen X.; Ma L. Catal. Lett. 2013, 143, 345.
doi: 10.1007/s10562-013-0977-7 |
[70] |
Jiang F.; Wang S.; Liu B.; Liu J.; Wang L.; Xiao Y.; Xu Y.; Liu X. ACS Catal. 2020, 10, 11493.
doi: 10.1021/acscatal.0c03324 |
[71] |
Gutterod E. S.; Lazzarini A.; Fjermestad T.; Kaur G.; Manzoli M.; Bordiga S.; Svelle S.; Lillerud K. P.; Skulason E.; Oien-Odegaard S.; Nova A.; Olsbye U. J. Am. Chem. Soc. 2020, 142, 999.
doi: 10.1021/jacs.9b10873 |
[72] |
Yang C.; Mu R.; Wang G.; Song J.; Tian H.; Zhao Z.-J.; Gong J. Chem. Sci. 2019, 10, 3161.
doi: 10.1039/C8SC05608K |
[73] |
Wang D.; Bi Q.; Yin G.; Zhao W.; Huang F.; Xie X.; Jiang M. Chem. Commun. 2016, 52, 14226.
doi: 10.1039/C6CC08161D |
[74] |
Shen C.; Sun K.; Zhang Z.; Rui N.; Jia X.; Mei D.; Liu C.-j. ACS Catal. 2021, 11, 4036.
doi: 10.1021/acscatal.0c05628 |
[75] |
Tadahiro F.; Isao N. B. Chem. Soc. Jpn. 2002, 75, 1393.
doi: 10.1246/bcsj.75.1393 |
[76] |
Manrique R.; Jiménez R.; Rodríguez-Pereira J.; Baldovino-Medrano V. G.; Karelovic A. Int. J. Hydrog. Energy. 2019, 44, 16526.
doi: 10.1016/j.ijhydene.2019.04.206 |
[77] |
Zabilskiy M.; Sushkevich V. L.; Newton M. A.; Krumeich F.; Nachtegaal M.; van Bokhoven J. A. Angew. Chem. Int. Ed. 2021, 60, 17053.
doi: 10.1002/anie.v60.31 |
[78] |
Li X.; Liu G.; Xu D.; Hong X.; Tsang S. C. E. J. Mater. Chem. A 2019, 7, 23878.
doi: 10.1039/C9TA03410B |
[79] |
Jiang X.; Nie X.; Wang X.; Wang H.; Koizumi N.; Chen Y.; Guo X.; Song C. J. Catal. 2019, 369, 21.
doi: 10.1016/j.jcat.2018.10.001 |
[80] |
Bai S.; Shao Q.; Wang P.; Dai Q.; Wang X.; Huang X. J. Am. Chem. Soc. 2017, 139, 6827.
doi: 10.1021/jacs.7b03101 |
[81] |
Fiordaliso E. M.; Sharafutdinov I.; Carvalho H. W. P.; Grunwaldt J.-D.; Hansen T. W.; Chorkendorff I.; Wagner J. B.; Damsgaard C. D. ACS Catal. 2015, 5, 5827.
doi: 10.1021/acscatal.5b01271 |
[82] |
Toyao T.; Kayamori S.; Maeno Z.; Siddiki S. M. A. H.; Shimizu K.-i. ACS Catal. 2019, 9, 8187.
doi: 10.1021/acscatal.9b01225 |
[83] |
He Z.; Qian Q.; Ma J.; Meng Q.; Zhou H.; Song J.; Liu Z.; Han B. Angew. Chem. Int. Ed. 2016, 55, 737.
doi: 10.1002/anie.v55.2 |
[84] |
Chen Y.; Li H.; Zhao W.; Zhang W.; Li J.; Li W.; Zheng X.; Yan W.; Zhang W.; Zhu J.; Si R.; Zeng J. Nat. Commun. 2019, 10, 1885.
doi: 10.1038/s41467-019-09918-z |
[85] |
Li H.; Wang L.; Dai Y.; Pu Z.; Lao Z.; Chen Y.; Wang M.; Zheng X.; Zhu J.; Zhang W.; Si R.; Ma C.; Zeng J. Nat. Nanotechnol. 2018, 13, 411.
doi: 10.1038/s41565-018-0089-z |
[86] |
Wang J.; Sun K.; Jia X.; Liu C.-j. Catal. Today 2021, 365, 341.
doi: 10.1016/j.cattod.2020.05.020 |
[87] |
Lu Z.; Wang J.; Sun K.; Xiong S.; Zhang Z.; Liu C.-j. Green Chem. Eng. 2022, 3, 165.
doi: 10.1016/j.gce.2021.12.002 |
[88] |
Zheng K.; Li Y.; Liu B.; Jiang F.; Xu Y.; Liu X. Angew. Chem. Int. Ed. 2022, 61, e2022109.
|
[89] |
Chen T.-y.; Su J.; Zhang Z.; Cao C.; Wang X.; Si R.; Liu X.; Shi B.; Xu J.; Han Y.-F. ACS Catal. 2018, 8, 8606.
doi: 10.1021/acscatal.8b00453 |
[90] |
Wang L.; He S.; Wang L.; Lei Y.; Meng X.; Xiao F.-S. ACS Catal. 2019, 9, 11335.
doi: 10.1021/acscatal.9b04187 |
[91] |
Pei Y.; Ding Y.; Zang J.; Song X.; Dong W.; Zhu H.; Wang T.; Chen W. Chinese. J. Catal. 2015, 36, 252.
doi: 10.1016/S1872-2067(14)60179-0 |
[92] |
Takashi T.; Atsushi M.; Hiro-o T. Chem. Lett. 1985, 14, 593.
doi: 10.1246/cl.1985.593 |
[93] |
Geng W.; Liu F.; Han H.; Xiao L.; Wu W. J. Fuel. Chem. Technol. 2017, 45, 458. (in Chinese)
|
( 耿文浩, 刘飞, 韩寒, 肖林飞, 吴伟, 燃料化学学报, 2017, 45, 458.)
|
|
[94] |
Zhang Y.; He Y.; Cao M.; Liu B.; Li J. Fuel. 2022, 325, 124854.
doi: 10.1016/j.fuel.2022.124854 |
[95] |
Nieskens D. L. S.; Ferrari D.; Liu Y.; Kolonko R. Catal. Commun. 2011, 14, 111.
doi: 10.1016/j.catcom.2011.07.020 |
[96] |
Liu S.; Zhou H.; Zhang L.; Ma Z.; Wang Y. Chem. Eng. Technol. 2019, 42, 962.
doi: 10.1002/ceat.v42.5 |
[97] |
Ait Ahsaine H.; Zbair M.; BaQais A.; Arab M. Catalysts. 2022, 12, 450.
doi: 10.3390/catal12050450 |
[98] |
Shinde G. Y.; Mote A. S.; Gawande M. B. Catalysts. 2022, 12, 94.
doi: 10.3390/catal12010094 |
[99] |
Martin O.; Martin A. J.; Mondelli C.; Mitchell S.; Segawa T. F.; Hauert R.; Drouilly C.; Curulla-Ferre D.; Perez-Ramirez J. Angew. Chem. Int. Ed. 2016, 55, 6261.
doi: 10.1002/anie.201600943 |
[100] |
Ye J.; Liu C.; Mei D.; Ge Q. ACS Catal. 2013, 3, 1296.
doi: 10.1021/cs400132a |
[101] |
Frei M. S.; Mondelli C.; Cesarini A.; Krumeich F.; Hauert R.; Stewart J. A.; Curulla Ferré D.; Pérez-Ramírez J. ACS Catal. 2020, 10, 1133.
doi: 10.1021/acscatal.9b03305 |
[102] |
Tsoukalou A.; Abdala P. M.; Stoian D.; Huang X.; Willinger M.-G.; Fedorov A.; Müller C. R. J. Am. Chem. Soc. 2019, 141, 13497.
doi: 10.1021/jacs.9b04873 |
[103] |
Chen P.; Tao L.; Zhu J.; Zhao G.; Liu Y.; Lu Y. Energy Technol. 2019, 7, 1800747.
doi: 10.1002/ente.v7.3 |
[104] |
Chen T.-y.; Cao C.; Chen T.-b.; Ding X.; Huang H.; Shen L.; Cao X.; Zhu M.; Xu J.; Gao J.; Han Y.-F. ACS Catal. 2019, 9, 8785.
doi: 10.1021/acscatal.9b01869 |
[105] |
Cai Z.; Dai J.; Li W.; Tan K. B.; Huang Z.; Zhan G.; Huang J.; Li Q. ACS Catal. 2020, 10, 13275.
doi: 10.1021/acscatal.0c03372 |
[106] |
Men Y.-L.; Liu Y.; Wang Q.; Luo Z.-H.; Shao S.; Li Y.-B.; Pan Y.-X. Chem. Eng. Sci. 2019, 200, 167.
doi: 10.1016/j.ces.2019.02.004 |
[107] |
Yao L.; Shen X.; Pan Y.; Peng Z. J. Catal. 2019, 372, 74.
doi: 10.1016/j.jcat.2019.02.021 |
[108] |
Lu Z.; Sun K.; Wang J.; Zhang Z.; Liu C. Catalysts 2020, 10, 1360.
doi: 10.3390/catal10111360 |
[109] |
Snider J. L.; Streibel V.; Hubert M. A.; Choksi T. S.; Valle E.; Upham D. C.; Schumann J.; Duyar M. S.; Gallo A.; Abild-Pedersen F.; Jaramillo T. F. ACS Catal. 2019, 9, 3399.
doi: 10.1021/acscatal.8b04848 |
[110] |
Shen C.; Sun K.; Zou R.; Wu Q.; Mei D.; Liu C.-j. ACS Catal. 2022, 12, 12658.
doi: 10.1021/acscatal.2c03709 |
[111] |
Han Z.; Tang C.; Wang J.; Li L.; Li C. J. Catal. 2021, 394, 236.
doi: 10.1016/j.jcat.2020.06.018 |
[112] |
Witoon T.; Numpilai T.; Nijpanich S.; Chanlek N.; Kidkhunthod P.; Cheng C. K.; Ng K. H.; Vo D.-V. N.; Ittisanronnachai S.; Wattanakit C.; Chareonpanich M.; Limtrakul J. Chem. Eng. J. 2022, 431, 133211.
doi: 10.1016/j.cej.2021.133211 |
[113] |
Wang J.; Li G.; Li Z.; Tang C.; Feng Z.; An H.; Liu H.; Liu T.; Li C. Sci. Adv. 2017, 3, e1701290.
doi: 10.1126/sciadv.1701290 |
[114] |
Wang J.; Tang C.; Li G.; Han Z.; Li Z.; Liu H.; Cheng F.; Li C. ACS Catal. 2019, 9, 10253.
doi: 10.1021/acscatal.9b03449 |
[115] |
Temvuttirojn C.; Poo-arporn Y.; Chanlek N.; Cheng C. K.; Chong C. C.; Limtrakul J.; Witoon T. Ind. Eng. Chem. Res. 2020, 59, 5525.
doi: 10.1021/acs.iecr.9b05691 |
[116] |
Li W.; Wang K.; Huang J.; Liu X.; Fu D.; Huang J.; Li Q.; Zhan G. ACS Appl. Mater. Inter. 2019, 11, 33263.
doi: 10.1021/acsami.9b11547 |
[117] |
Sha F.; Tang C.; Tang S.; Wang Q.; Han Z.; Wang J.; Li C. J. Catal. 2021, 404, 383.
doi: 10.1016/j.jcat.2021.09.030 |
[118] |
Fang X.; Xi Y.; Jia H.; Chen C.; Wang Y.; Song Y.; Du T. J. Ind. Eng. Chem. 2020, 88, 268.
doi: 10.1016/j.jiec.2020.04.024 |
[119] |
Huang C.; Wu Z.; Luo H.; Zhang S.; Shao Z.; Wang H.; Sun Y. ACS Appl. Energ. Mater. 2021, 4, 9258.
doi: 10.1021/acsaem.1c01502 |
[120] |
Lee K.; Anjum U.; Araújo T. P.; Mondelli C.; He Q.; Furukawa S.; Pérez-Ramírez J.; Kozlov S. M.; Yan N. Appl. Catal. B-Environ. 2022, 304.
|
[121] |
Hu J.; Yu L.; Deng J.; Wang Y.; Cheng K.; Ma C.; Zhang Q.; Wen W.; Yu S.; Pan Y.; Yang J.; Ma H.; Qi F.; Wang Y.; Zheng Y.; Chen M.; Huang R.; Zhang S.; Zhao Z.; Mao J.; Meng X.; Ji Q.; Hou G.; Han X.; Bao X.; Wang Y.; Deng D. Nat. Catal. 2021, 4, 242.
doi: 10.1038/s41929-021-00584-3 |
[122] |
Zhou S.; Zeng H. C. ACS Catal. 2022, 12, 9872.
doi: 10.1021/acscatal.2c02838 |
[123] |
Pei Y.-P.; Liu J.-X.; Zhao Y.-H.; Ding Y.-J.; Liu T.; Dong W.-D.; Zhu H.-J.; Su H.-Y.; Yan L.; Li J.-L.; Li W.-X. ACS Catal. 2015, 5, 3620.
doi: 10.1021/acscatal.5b00791 |
[124] |
Zhang S.; Liu X.; Shao Z.; Wang H.; Sun Y. J. Catal. 2020, 382, 86.
doi: 10.1016/j.jcat.2019.11.038 |
[125] |
Yang Q.; Kondratenko V. A.; Petrov S. A.; Doronkin D. E.; Saraçi E.; Lund H.; Arinchtein A.; Kraehnert R.; Skrypnik A. S.; Matvienko A. A.; Kondratenko E. V. Angew. Chem. Int. Ed. 2022, 61, e202116517.
doi: 10.1002/anie.v61.22 |
[126] |
Zhang S.; Wu Z.; Liu X.; Shao Z.; Xia L.; Zhong L.; Wang H.; Sun Y. Appl. Catal. B-Environ. 2021, 293, 120207.
doi: 10.1016/j.apcatb.2021.120207 |
[127] |
Han H.; Geng W.; Xiao L.; Wu W. J. Taiwan Inst. Chem. E 2019, 95, 112.
doi: 10.1016/j.jtice.2018.10.005 |
[128] |
Chen Y.; Choi S.; Thompson L. T. J. Catal. 2016, 343, 147.
doi: 10.1016/j.jcat.2016.01.016 |
[129] |
Posada-Pérez S.; Ramírez P. J.; Evans J.; Viñes F.; Liu P.; Illas F.; Rodriguez J. A. J. Am. Chem. Soc. 2016, 138, 8269.
doi: 10.1021/jacs.6b04529 |
[130] |
Dongil A. B.; Zhang Q.; Pastor-Pérez L.; Ramírez-Reina T.; Guerrero-Ruiz A.; Rodríguez-Ramos I. Catalysts. 2020, 10, 1213.
doi: 10.3390/catal10101213 |
[131] |
Li Y.-M.; Liu Z.-Y.; Zhang Q.-Y.; Wang Y.-J.; Cui G.-Q.; Zhao Z.; Xu C.-M.; Jiang G.-Y. Pet. Sci. 2023, 20, 559.
doi: 10.1016/j.petsci.2022.01.008 |
[132] |
Wu D.; Deng K.; Hu B.; Lu Q.; Liu G.; Hong X. ChemCatChem. 2019, 11, 1598.
doi: 10.1002/cctc.v11.6 |
[1] | Guanglong Huang, Xiao-Song Xue. Computational Study on the Mechanism of Chen’s Reagent as Trifluoromethyl Source [J]. Acta Chimica Sinica, 2024, 82(2): 132-137. |
[2] | Yaning Li, Xiaoyan Wang, Yong Tang. The Regulation of Stereoselectivity in Radical Polymerization★ [J]. Acta Chimica Sinica, 2024, 82(2): 213-225. |
[3] | Xinpu Fu, Xiuling Wang, Weiwei Wang, Rui Si, Chunjiang Jia. Fabrication and Mechanism Study of Clustered Au/CeO2 Catalyst for the CO Oxidation Reaction★ [J]. Acta Chimica Sinica, 2023, 81(8): 874-883. |
[4] | Jianchuan Liu, Cuiyan Li, Yaozu Liu, Yujie Wang, Qianrong Fang. Highly-Stable Two-Dimensional Bicarbazole-based sp2-Carbon-conjugated Covalent Organic Framework for Efficient Electrocatalytic Oxygen Reduction★ [J]. Acta Chimica Sinica, 2023, 81(8): 884-890. |
[5] | Tiancheng Zhao, Hongyu Jiang, Kun Zhang, Yifan Xu, Xinyue Kang, Jiancheng Xu, Xufeng Zhou, Peining Chen, Huisheng Peng. Continuous Preparation of High-performing Carbon Nanotube Fibers Based on Cycloalkane/ethanol Mixing Carbon Source [J]. Acta Chimica Sinica, 2023, 81(6): 565-571. |
[6] | Zihao Wang, Min Chen, Changle Chen. Catalytic Synthesis of Polyolefin Elastomer Using Unsymmetrical α-Diimine Nickel Catalyst★ [J]. Acta Chimica Sinica, 2023, 81(6): 559-564. |
[7] | Liu Lujie, Zhang Jian, Wang Liang, Xiao Fengshou. Heterogeneous Catalysts for Selective Hydrogenolysis of Biomass-derived Polyols★ [J]. Acta Chimica Sinica, 2023, 81(5): 533-547. |
[8] | Bin Xu, Xiuzhi Wei, Jiangmin Sun, Jianguo Liu, Longlong Ma. In-situ Synthesis of Nitrogen-doped Graphene Layer Encapsulated Palladium Nanoparticles for Highly Selective Hydrogenation of Vanillin [J]. Acta Chimica Sinica, 2023, 81(3): 239-245. |
[9] | Jian Liu, Jinhua Ou, Zeping Li, jingyi Jiang, Rongtao Liang, Wenjie Zhang, kaijian Liu, Yu Han. Efficient Catalytic Hydrogenation of Nitroaromatic Using Cobalt Single-atom Derived from Metal-organic Framework [J]. Acta Chimica Sinica, 2023, 81(12): 1701-1707. |
[10] | Guan-Wen Yang, Guang-Peng Wu. Modular Bifunctional Organoboron-ammonium/phosphonium Catalysts: Design and Catalytic Performance★ [J]. Acta Chimica Sinica, 2023, 81(11): 1551-1565. |
[11] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[12] | Jinjing Liu, Na Yang, Li Li, Zidong Wei. Theoretical Study on the Regulation of Oxygen Reduction Mechanism by Modulating the Spatial Structure of Active Sites on Platinum★ [J]. Acta Chimica Sinica, 2023, 81(11): 1478-1485. |
[13] | Qingxin Wang, Yong Cui, Yunqi Li, Shanfu Lu, Yan Xiang. Effect of Controllable Pyrolysis of Ionomers in Fe-N-C Cathode Catalytic Layer on Cell Performance and Stability of Membrane Electrode Assembly★ [J]. Acta Chimica Sinica, 2023, 81(10): 1350-1356. |
[14] | Bo Li, Haiyan Zhou, Haiyan Ma, Jiling Huang. Synthesis of Ethylene-Bridged Bis(indenyl) Zirconium, Hafnium Complexes and Their Catalytic Behavior on Selective Propylene Oligomerization: the Effect of 3-Substituent on Indenyl Ring [J]. Acta Chimica Sinica, 2023, 81(10): 1280-1294. |
[15] | Zhiping Chen, Yongle Meng, Jing Lu, Wenwu Zhou, Zhiyuan Yang, Anning Zhou. Preparation of Fe@Si/S-34 Catalysts and Its Catalytic Performance for Syngas to Olefins [J]. Acta Chimica Sinica, 2023, 81(1): 14-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||