Review

Advances in Molecular Dynamics Studies of Molten Salts Based on Machine Learning

  • Yizhi Han ,
  • Jianhui Lan ,
  • Xue Liu ,
  • Weiqun Shi
Expand
  • a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049
    b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049

Received date: 2023-07-11

  Online published: 2023-08-28

Supported by

National Science Fund for Distinguished Young Scholars(21925603)

Abstract

Molten salt is a kind of molten material with important application value. However, the relationship between microstructure and macroscopic properties of molten salt has not been fully investigated, so it is of great significance to carry out extensive molecular dynamics studies. For high-temperature molten salts, molecular dynamics studies mainly relied on the development of force fields in classical molecular dynamics and first principles molecular dynamics previously. Due to the accelerated development of machine learning and neural networks, the potential for molten salts based on machine learning has been developed recently, and great progress has been made in exploring the coordination chemistry and accurately predicting physical properties. Herein, the latest research progress of molecular dynamics related to molten salt was firstly reviewed, especially the development status of machine learning potential. Secondly, the application progress of machine learning potentials in the research of molten salt was summarized. Finally, the research prospect of machine learning potentials for molten salt was discussed, and some suggestions were given.

Cite this article

Yizhi Han , Jianhui Lan , Xue Liu , Weiqun Shi . Advances in Molecular Dynamics Studies of Molten Salts Based on Machine Learning[J]. Acta Chimica Sinica, 2023 , 81(11) : 1663 -1672 . DOI: 10.6023/A23070328

References

[1]
Abu-Khader M. M. Prog. Nucl. Energ. 2009, 51, 225.
[2]
Chen G. Z.; Fray D. J.; Farthing T. W. J. N. Nature 2000, 407, 361.
[3]
Wang K.; Jiang K.; Chung B.; Ouchi T.; Burke P. J.; Boysen D. A.; Bradwell D. J.; Kim H.; Muecke U.; Sadoway D. R. Nature 2014, 514, 348.
[4]
Zhong Y. K.; Liu Y. L.; Liu K.; Wang L.; Mei L.; Gibson J. K.; Chen J. Z.; Jiang S. L.; Liu Y. C.; Yuan L. Y.; Chai Z. F.; Shi W. Q. Nat. Commun. 2021, 12, 5777.
[5]
alanne M.; Simon C.; Turq P.; Ohtori N.; Madden P. A. In Molten Salts Chemistry, Vol. 1, Eds.: Lantelme, F.; Groult, H., Elsevier, Amsterdam, 2013, pp. 1-16.
[6]
Zhang X.; Zhang L.; Bo T.; Huang S.; Huang Z.; Shi W. Chin. Chem. Lett. 2022, 33, 3527.
[7]
Jiang S.; Lan J.; Wang L.; Liu Y.; Zhong Y.; Liu Y.; Yuan L. L.; Zheng L.; Chai Z.; Shi W. Chem.-Eur. J. 2021, 27, 11721.
[8]
Jiang S.; Liu Y.; Wang L.; Chai Z.; Shi W. Q. Chem.-Eur. J. 2022, 28, e202201145.
[9]
Liu Y.-L.; Lan J.-H.; Wang L.; Jiang S.-L.; Liu Y.-C.; Zhong Y.-K.; Yang D.-W.; Zhang L.; Shi W.-Q. Electrochim. Acta 2022, 404, 139573.
[10]
Kwon C.; Kang J.; Kang W.; Kwak D.; Han B. Electrochim. Acta 2016, 195, 216.
[11]
Worth G. A.; Cederbaum L. S. Annu. Rev. Phys. Chem. 2004, 55, 127.
[12]
Kresse G.; Furthmüller J. Phys. Rev. B 1996, 54, 11169.
[13]
Tse J. S. Annu. Rev. Phys. Chem. 2002, 53, 249.
[14]
Monticelli L.; Tieleman D. P. Methods Mol. Biol. 2013, 924, 197.
[15]
Perdew J. P.; Burke K.; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
[16]
Huggins M. L.; Mayer J. E. J. Chem. Phys. 1933, 1, 643.
[17]
Salanne M.; Rotenberg B.; Jahn S.; Vuilleumier R.; Simon C.; Madden P. A. Theor. Chem. Acc. 2012, 131, 1.
[18]
Dewan L. C.; Simon C.; Madden P. A.; Hobbs L. W.; Salanne M. J. Nucl. Mater. 2013, 434, 322.
[19]
Emerson M. S.; Sharma S.; Roy S.; Bryantsev V. S.; Ivanov A. S.; Gakhar R.; Woods M. E.; Gallington L. C.; Dai S.; Maltsev D. S.; Margulis C. J. J. Am. Chem. Soc. 2022, 144, 21751.
[20]
Wang H.; DeFever R. S.; Zhang Y.; Wu F.; Roy S.; Bryantsev V. S.; Margulis C. J.; Maginn E. J. J. Chem. Phys. 2020, 153, 214502.
[21]
Howe M.; McGreevy R. L. Philp. Mag. B 1988, 58, 485.
[22]
Tosi M.; Fumi F. J. Phys. Chem. Solids 1964, 25, 45.
[23]
Fumi F.; Tosi M. J. Phys. Chem. Solids 1964, 25, 31.
[24]
Dewan L. C.; Simon C.; Madden P. A.; Hobbs L. W.; Salanne M. J. Nucl. Mater. 2013, 434, 322.
[25]
Nam H. O.; Bengtson A.; V?rtler K.; Saha S.; Sakidja R.; Morgan D. J. Nucl. Mater. 2014, 449, 148.
[26]
Li X.; Song J.; Shi S.; Yan L.; Zhang Z.; Jiang T.; Peng S. J. Phys. Chem. A 2017, 121, 571.
[27]
Kwon C.; Noh S. H.; Chun H.; Hwang I. S.; Han B. Int. J. Energ. Res. 2018, 42, 2757.
[28]
Guo H.; Li J.; Zhang H.; Li T.; Luo J.; Yu X.; Wu S.; Zong C. Chem. Phys. Lett. 2019, 730, 587.
[29]
Galamba N.; Costa Cabral B. J. J. Chem. Phys. 2007, 126, 124502.
[30]
Glover W. J.; Madden P. A. J. Chem. Phys. 2004, 121, 7293.
[31]
Mukhopadhyay S.; Demmel F. In Proceedings of the Joint Conference on Quasielastic Neutron Scattering and the Workshop on Inelastic Neutron Spectrometers Qens/Wins 2016: Probing Nanoscale Dynamics in Energy Related Materials, Eds.: Felix, F.; David, L.; Veronika, G.; Wiebke, L.; Astrid, S.; Margarita, R.; AIP Publishing LLC, Potsdam, 2018, p. 030001.
[32]
McCulloch W. S.; Pitts W. Bull. Math. Biophys. 1943, 5, 115.
[33]
Behler J.; Parrinello M. Phys. Rev. Lett. 2007, 98, 146401.
[34]
Bartók A. P.; Payne M. C.; Kondor R.; Csanyi G. Phys. Rev. Lett. 2010, 104, 136403.
[35]
Schutt K. T.; Arbabzadah F.; Chmiela S.; Muller K. R.; Tkatchenko A. Nat. Commun. 2017, 8, 13890.
[36]
Han J.; Zhang L.; Car R.; E W. Commun. Comput. Phys. 2018, 23, 629.
[37]
Wang X.; Li J.; Yang L.; Chen F.; Wang Y.; Chang J.; Chen J.; Zhang L.; Yu K. ChemRxiv, Preprint.
[38]
Lot R.; Pellegrini F.; Shaidu Y.; Kucukbenli E. Comput. Phys. Commun. 2020, 256, 107402.
[39]
Bartók A. P.; Csányi G. Int. J. Quantum. Chem. 2015, 115, 1051.
[40]
Zhang Y.; Wang H.; Chen W.; Zeng J.; Zhang L.; Wang H.; E W. Comput. Phys. Commun. 2020, 253, 107206.
[41]
Porter T.; Vaka M. M.; Steenblik P.; Della Corte D. Commun. Chem. 2022, 5, 69.
[42]
Jiang W.; Zhang Y.; Zhang L.; Wang H. Chin. Phys. B 2021, 30, 050706.
[43]
Dai F. Z.; Wen B.; Sun Y. J.; Xiang H. M.; Zhou Y. C. J. Mater. Sci. Technol. 2020, 43, 168.
[44]
Goldsmith B. R.; Esterhuizen J.; Liu J. X.; Bartel C. J.; Sutton C. AIChE J. 2018, 64, 2311.
[45]
Ding X.; Tao M.; Li J. H.; Li M. Y.; Shi M. C.; Chen J. S.; Tang Z.; Benistant F.; Liu J. Mater. Sci. Semicon. Proc. 2022, 143, 106513.
[46]
Tovey S.; Narayanan Krishnamoorthy A.; Sivaraman G.; Guo J.; Benmore C.; Heuer A.; Holm C. J. Phys. Chem. C 2020, 124, 25760.
[47]
Liang W. S.; Lu G. M.; Yu J. G. J. Mater. Sci. Technol. 2021, 75, 78.
[48]
Xie Y.; Bu M.; Zou G.; Zhang Y.; Lu G. Sol. Energy Mater. Sol. Cells 2023, 254, 112275.
[49]
Liang W. S.; Lu G. M.; Yu J. G. Adv. Theory. Simul. 2020, 3, 2000180.
[50]
Bu M.; Liang W.; Lu G.; Yu J. Sol. Energy Mater. Sol. Cells 2021, 232, 111346.
[51]
Liang W.; Lu G.; Yu J. ACS Appl. Mater. Interfaces 2021, 13, 4034.
[52]
Bu M.; Liang W. S.; Lu G. M. Comp. Mater. Sci. 2022, 210, 111494.
[53]
Smirnov M. V.; Khokhlov V. A.; Filatov E. S. Electrochim. Acta 1987, 32, 1019.
[54]
Gheribi A. E.; Torres J. A.; Chartrand P. Sol. Energy Mater. Sol. Cells 2014, 126, 11.
[55]
Janz G. J.; Tomkins R. Physical Properties Data Compilations Relevant to Energy Storage. IV. Molten Salts: Data on Additional Single and multi-Component Salt Systems, National Standard Reference Data System, 1981.
[56]
Anderson N. A.; Sabharwall P. Nucl. Technol. 2012, 178, 335.
[57]
Xu X.; Wang X.; Li P.; Li Y.; Hao Q.; Xiao B.; Elsentriecy H.; Gervasio D. J. Sol. Energ.-T. ASME 2018, 140, 051011.
[58]
Xu T.; Li X.; Wang Y.; Tang Z. ACS Appl. Mater. Interfaces 2023, 15, 14184.
[59]
Zhang J.; Fuller J.; An Q. J. Phys. Chem. B 2021, 125, 8876.
[60]
Rodriguez A.; Lam S.; Hu M. ACS Appl. Mater. Interfaces 2021, 13, 55367.
[61]
Smith A. L.; Capelli E.; Konings R. J. M.; Gheribi A. E. J. Mol. Liq. 2020, 299, 112165.
[62]
Golyshev V. D.; Gonik M. A.; Petrov V. A.; Putilin Y. M. High Temp+. 1983, 21, 684.
[63]
Abe Y.; Kosugiyama O.; Nagashima A. J. Nucl. Mater. 1981, 99, 173.
[64]
Chahal R.; Roy S.; Brehm M.; Banerjee S.; Bryantsev V.; Lam S. T. JACS Au 2022, 2, 2693.
[65]
Brehm M.; Kirchner B. J. Chem. Inf. Model. 2011, 51, 2007.
[66]
Dracopoulos V.; Vagelatos J.; Papatheodorou G. N. J. Chem. Soc., Dalton Trans. 2001, 1117.
[67]
Nguyen M. T.; Rousseau R.; Paviet P. D.; Glezakou V. A. ACS Appl. Mater. Interfaces 2021, 13, 53398.
[68]
Li B.; Dai S.; Jiang D. E. ACS Appl. Energ. Mater. 2019, 2, 2112.
[69]
Barraz N. M., Jr.; Salcedo E.; Barbosa M. C. J. Chem. Phys. 2011, 135, 104507.
[70]
Rosenfeld Y. J. Phys.-Condens. Mat. 1999, 11, 5415.
[71]
Feng T.; Zhao J.; Liang W.; Lu G. Comp. Mater. Sci. 2022, 210, 111014.
[72]
Iwadate Y.; Suzuki K.; Onda N.; Fukushima K.; Watanabe S.; Matsuura H.; Kajinami A.; Takase K.; Ohtori N.; Umesaki N. J. Alloys Compd. 2006, 408, 248.
[73]
Okamoto Y.; Shiwaku H.; Yaita T.; Narita H.; Tanida H. J. Mol. Struct. 2002, 641, 71.
[74]
Wasse J. C.; Salmon P. S. J. Phys.-Condens. Mat. 1999, 11, 1381.
[75]
Ren P.; Xiao Y.; Chang X.; Huang P.-Y.; Li Z.; Chen X.; Wang X. ACM Comput. Surv. 2020, 54, 1.
[76]
Sivaraman G.; Guo J.; Ward L.; Hoyt N.; Williamson M.; Foster I.; Benmore C.; Jackson N. J. Phys. Chem. Lett. 2021, 12, 4278.
[77]
Guo J.; Merwin A.; Benmore C. J.; Mei Z.-G.; Hoyt N. C.; Williamson M. A. J. Phys. Chem. B 2019, 123, 10036.
[78]
Guo D.; Zhao J.; Liang W. S.; Lu G. M. J. Mol. Liq. 2022, 348, 118380.
[79]
Yin W.; Bo T.; Zhao Y.; Zhang L.; Chai Z.; Shi W. Sci. Sin. Chim. 2023, 53, 1008.
Outlines

/