Review

Recent Advances and Application Prospects in Photothermal Materials

  • He Xu ,
  • Pengbo Han ,
  • Anjun Qin ,
  • Ben Zhong Tang
Expand
  • a State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
    b Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
    c School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
    d Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-05-17

  Online published: 2023-07-13

Supported by

National Natural Science Foundation of China(21788102); Natural Science Foundation of Guangdong Province(2019B030301003); Innovation and Technology Commission of Hong Kong(ITC-CNERC14SC01)

Abstract

Photothermal effect refers to the characteristics of materials that could generate heat under the irradiation of sun or laser light. It can not only maximize the efficiency of solar energy conversion, but also break through the spatiotemporal limitation of laser light transmission, which holds excellent potential and application prospect. Currently, researchers have developed many photothermal materials based on three main photothermal effect mechanisms, plasmonic heating, non-radiative relaxation in semiconductors and thermal vibration in molecules, which include metal nanomaterials, inorganic semiconductor materials, carbon materials, two-dimensional transition metal carbides and nitrides (MXenes), organic small molecules, polymer materials, metal organic framework (MOF), covalent organic framework (COF), organic co-crystals materials, etc. Among them, inorganic materials have the advantages of a wide range of sources, simple structure and excellent thermal stability, while organic materials can be easily designed in structure, and have better biocompatibility. Based on these attractive characteristics, the photothermal effects have been extensively investigated in the area of energy utilization, biomedicine, catalytic conversion, intelligent devices, etc., and realized the applications in photothermal solar evaporation, photothermal therapy, photothermal catalysis, photothermal functional materials. In addition to the rapid development of traditional applications, novel applications have also been explored, such as anti-icing coating, reversible adhesive, agriculture heaters, photothermal energy storage, photothermal induced self-healing materials, photothermal-driven soft robots, etc. However, there are still some challenges in the research of photothermal materials, such as narrow absorption range, low photothermal conversion efficiency, limited application development, and difficulty in use of the elevated temperature induced by photothermal effect. This review briefly summarizes the progresses in the development, utilization of photothermal materials. The challenges and the development direction of photothermal materials are also discussed. It is hope that this review could provide inspiration for the further research in terms of construction of new photothermal materials and innovation of their application.

Cite this article

He Xu , Pengbo Han , Anjun Qin , Ben Zhong Tang . Recent Advances and Application Prospects in Photothermal Materials[J]. Acta Chimica Sinica, 2023 , 81(10) : 1420 -1437 . DOI: 10.6023/A23050232

References

[1]
Mekonnen, M. M.; Hoekstra, A. Y. Sci. Adv. 2016, 2, e1500323.
[2]
Kerr, R. A.; Service, R. F. Science 2005, 309, 101.
[3]
Chu, S.; Majumdar, A. Nature 2012, 488, 294.
[4]
Elimelech, M.; Phillip, W. A. Science 2011, 333, 712.
[5]
Zhao, Y.; Gao, W.; Li, S.; Williams, G. R.; Mahadi, A. H.; Ma, D. Joule 2019, 3, 920.
[6]
Ni, G.; Li, G.; Boriskina, S. V.; Li, H.; Yang, W.; Zhang, T.; Chen, G. Nat. Energy 2016, 1, 16126.
[7]
Ding, W.; Bauer, T. Engineering 2021, 7, 334.
[8]
Song, C.; Wang, Z.; Yin, Z.; Xiao, D.; Ma, D. Chem Catalysis 2022, 2, 52.
[9]
Gao, M.; Zhu, L.; Peh, C. K.; Ho, G. W. Energ. Environ. Sci. 2019, 12, 841.
[10]
Chen, C.; Kuang, Y.; Hu, L. Joule 2019, 3, 683.
[11]
Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Nat. Catal. 2018, 1, 656.
[12]
Jiang, N.; Zhuo, X.; Wang, J. Chem. Rev. 2018, 118, 3054.
[13]
Brongersma, M. L.; Halas, N. J.; Nordlander, P. Nat. Nanotechnol. 2015, 10, 25.
[14]
Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S.; Zhu, J. Nat. Photonics. 2016, 10, 393.
[15]
Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212.
[16]
Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 7238.
[17]
Liu, X.; Wei, R.; Hoang, P. T.; Wang, X.; Liu, T.; Keller, P. Adv. Funct. Mater. 2015, 25, 3022.
[18]
Yao, J.; Li, T.; Ma, S.; Qian, G.; Song, G.; Zhang, J.; Zhou, H.; Liu, G. Smart Mater. Struct. 2020, 29, 115040.
[19]
Sun, W.; Zhong, G.; Kubel, C.; Jelle, A. A.; Qian, C.; Wang, L.; Ebrahimi, M.; Reyes, L. M.; Helmy, A. S.; Ozin, G. A. Angew. Chem. Int. Ed. 2017, 56, 6329.
[20]
Zhou, P.; Navid, I. A.; Xiao, Y.; Ye, Z.; Dong, W. J.; Wang, P.; Sun, K.; Mi, Z. J. Phys. Chem. Lett. 2022, 13, 8122.
[21]
Link, S.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3529.
[22]
Zhang, S.; Shi, Y.; He, T.; Ni, B.; Li, C.; Wang, X. Chem. Mater. 2018, 30, 8727.
[23]
Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. Adv. Mater. 2017, 29, 1603730.
[24]
Yang, J.; Pang, Y.; Huang, W.; Shaw, S. K.; Schiffbauer, J.; Pillers, M. A.; Mu, X.; Luo, S.; Zhang, T.; Huang, Y.; Li, G.; Ptasinska, S.; Lieberman, M.; Luo, T. ACS Nano 2017, 11, 5510.
[25]
Feng, G.; Zhang, G. Q.; Ding, D. Chem. Soc. Rev. 2020, 49, 8179.
[26]
Chen, Q.; Pei, Z.; Xu, Y.; Li, Z.; Yang, Y.; Wei, Y.; Ji, Y. Chem. Sci. 2018, 9, 623.
[27]
Zhang, M.; Chen, Y.; Li, D.; He, Z. ; Wang, H.; Wu, A.; Fei, W.; Zheng, C.; Liu, E.; Huang, Y. ACS Appl. Mater. Interfaces 2022, 14, 38550.
[28]
Nair, R. V.; Puthiyaparambath, M. F.; Chatanathodi, R.; Nair, L. V.; Jayasree, R. S. Nanoscale, 2022, 14, 13561.
[29]
Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. ACS Nano. 2013, 7, 42.
[30]
Hogan. N. J.; Urban, A. S.; Ayala-Orozco, C.; Pimpinelli, A.; Nordlander, P.; Halas, N. J. Nano Lett. 2014, 14, 4640.
[31]
Liu, Y.; Yu, S.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H.; Shang, W.; Tao, P.; Song, C.; Deng, T. Adv. Mater. 2015, 27, 2768.
[32]
Chen, M.; He, Y.; Huang, J.; Zhu, J. Energy Convers. Manage. 2016, 127, 293.
[33]
Zhou, L.; Tan, Y.; Ji, D.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q.; Yu, Z.; Zhu, J. Sci. Adv. 2016, 2, e1501227.
[34]
Zhu, M.; Li, Y.; Chen, F.; Zhu, X.; Dai, J.; Li, Y.; Yang, Z.; Yan, X.; Song, J.; Wang, Y.; Hitz, E.; Luo, W.; Lu, M.; Yang, B.; Hu, L. Adv. Energy Mater. 2018, 8, 1701028.
[35]
Zhu, G.; Xu, J.; Zhao, W.; Huang, F. ACS Appl. Mater. Interfaces. 2016, 8, 31716.
[36]
Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Chem. Commun. 2017, 53, 6744.
[37]
Chen, R.; Wu, Z.; Zhang, T.; Yu, T.; Ye, M. RSC Adv. 2017, 7, 19849.
[38]
Yang, Y.; Yang, Y.; Chen, S.; Lu, Q.; Song, L.; Wei, Y.; Wang, X. Nat. Commun. 2017, 8, 1559.
[39]
Lu, Q.; Huang, B.; Zhang, Q.; Chen, S.; Gu, L.; Song, L.; Yang, Y.; Wang, X. J. Am. Chem. Soc. 2021, 143, 9858.
[40]
Liu, J.; Shi, W.; Wang, X. J. Am. Chem. Soc. 2019, 141, 18754.
[41]
Zhang, S.; Lu, Q.; Yu, B.; Cheng, X.; Zhuang, J.; Wang, X. Adv. Funct. Mater. 2021, 31, 2100703.
[42]
Liu, J.; Liu, N.; Wang, H.; Shi, W.; Zhuang, J.; Wang, X. J. Am. Chem. Soc. 2020, 142, 17557.
[43]
Shi, Y.; Li, R.; Jin, Y.; Zhuo, S.; Shi, L.; Chang, J.; Hong, S.; Ng, K-C.; Wang, P. Joule 2018, 2, 1171.
[44]
Cui, L.; Zhang, P.; Xiao, Y.; Liang, Y.; Liang, H.; Cheng, Z.; Qu, L. Adv. Mater. 2018, 30, e1706805.
[45]
Fu, Y.; Wang, G.; Ming, X.; Liu, X.; Hou, B.; Mei, T.; Li, J.; Wang, J.; Wang, X. Carbon 2018, 130, 250.
[46]
Hu, X.; Xu, W.; Zhou, L.; Tan, Y.; Wang, Y.; Zhu, S.; Zhu, J. Adv. Mater. 2017, 29, 1604031.
[47]
Chen, T.; Wang, S.; Wu, Z.; Wang, X.; Peng, J.; Wu, B.; Cui, J.; Fang, X.; Xie, Y.; Zheng, N. J. Mater. Chem. A 2018, 6, 14571.
[48]
Chen, C.; Li, Y.; Song, J.; Yang, Z.; Kuang, Y.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J. Y.; Yang, B.; Xie, J.; Hu, L. Adv. Mater. 2017, 29, 1701756.
[49]
Wang, Y.; Zhang, L.; Wang, P. ACS Sustainable Chem. Eng. 2016, 4, 1223.
[50]
Sajadi, S. M.; Farokhnia, N.; Irajizad, P.; Hasnain, M.; Ghasemi, H. J. Mater. Chem. A 2016, 4, 4700.
[51]
Liu, Y.; Chen, J.; Guo, D.; Cao, M.; Jiang, L. ACS Appl. Mater. Interfaces. 2015, 7, 13645.
[52]
Wu, J.; Lei, J. H.; He, B.; Deng, C.-X.; Tang, Z.; Qu, S. Aggregate 2021, 2, e139.
[53]
Jia, C.; Li, Y.; Yang, Z.; Chen, G.; Yao, Y.; Jiang, F.; Kuang, Y.; Pastel, G.; Xie, H.; Yang, B.; Das, S.; Hu, L. Joule 2017, 1, 588.
[54]
Cheng, Y.; Cheng, S.; Chen, B.; Jiang, J.; Tu, C.; Li, W.; Yang, Y.; Huang, K.; Wang, K.; Yuan, H.; Li, J.; Qi, Y.; Liu, Z. J. Am. Chem. Soc. 2022, 144, 15562.
[55]
Gao, Y.; Tang, Z.; Chen, X.; Yan, J.; Jiang, Y.; Xu, J.; Tao, Z.; Wang, L.; Liu, Z.; Wang, G. Aggregate. 2023, 4, e248.
[56]
Zhou, P.; Zhu, Q.; Sun, X.; Liu, L.; Cai, Z.; Xu, J. Chem. Eng. J. 2023, 464, 142508.
[57]
Niu, W.; Chen, G. Y.; Xu, H.; Liu, X.; Sun, J. Adv. Mater. 2022, 34, e2108232.
[58]
Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Chem. Soc. Rev. 2018, 47, 2280.
[59]
Xu, C.; Ye, R.; Shen, H.; Lam, J. W. Y.; Zhao, Z.; Tang, B. Z. Angew. Chem. Int. Ed. 2022, 61, e202204604.
[60]
Zhu, S.; Tian, R.; Antaris, A. L.; Chen, X.; Dai, H. Adv. Mater. 2019, 31, e1900321.
[61]
Espín, J.; Garzón-Tovar, L.; Carné-Sánchez, A.; Imaz, I.; Maspoch, D. ACS Appl. Mater. Interfaces 2018, 10, 9555.
[62]
Lu, B.; Chen, Y.; Li, P.; Wang, B.; Müllen, K.; Yin, M. Nat. Commun. 2019, 10, 767.
[63]
Wang, D.; Kan, X.; Wu, C.; Gong, Y.; Guo, G.; Liang, T.; Wang, L.; Li, Z.; Zhao, Y. Chem. Commun. 2020, 56, 5223.
[64]
Chen, Y.-T.; Wen, X.; He, J.; Li, Z.; Zhu, S.; Chen, W.; Yu, J.; Guo, Y.; Ni, S.; Chen, S.; Dang, L.; Li, M.-D. ACS Appl. Mater. Interfaces 2022, 14, 28781.
[65]
Xu, J.; Chen, Q.; Li, S.; Shen, J.; Keoingthong, P.; Zhang, L.; Yin, Z.; Cai, X.; Chen, Z.; Tan, W. Angew. Chem. Int. Ed. 2022, 61, e202202571.
[66]
Li, J.; Liu, W.; Qiu, X.; Zhao, X.; Chen, Z.; Yan, M.; Fang, Z.; Li, Z.; Tu, Z.; Huang, J. Green Chem. 2022, 24, 823.
[67]
Dai, S.; Yue, S.; Ning, Z.; Jiang, N.; Gan, Z. ACS Appl. Mater. Interfaces 2022, 14, 14668.
[68]
Cai, Y.; Liang, P.; Tang, Q.; Yang, X.; Si, W.; Huang, W.; Zhang, Q.; Dong, X. ACS Nano 2017, 11, 1054.
[69]
Qi, J.; Fang, Y.; Kwok, R. T. K.; Zhang, X.; Hu, X.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. ACS Nano 2017, 11, 7177.
[70]
Cui, Y.; Liu, J.; Li, Z.; Ji, M.; Zhao, M.; Shen, M.; Han, X.; Jia, T.; Li, C.; Wang, Y. Adv. Funct. Mater. 2021, 31, 2106247.
[71]
Liu, J.; Cui, Y.; Pan, Y.; Chen, Z.; Jia, T.; Li, C.; Wang, Y. Angew. Chem. Int. Ed. 2022, 61, e202117087.
[72]
Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 18, 1740.
[73]
Zhao, Z.; Chen, C.; Wu, W.; Wang, F.; Du, L.; Zhang, X.; Xiong, Y.; He, X.; Cai, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Gao, X.; Sun, P.; Phillips, D. L.; Ding, D.; Tang, B. Z. Nat. Commun. 2019, 10, 768.
[74]
Wang, Z.; Zhou, J.; Zhang, Y.; Zhu, W.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202113653.
[75]
Zhang, L.; Tang, B.; Wu, J.; Li, R.; Wang, P. Adv. Mater. 2015, 27, 4889.
[76]
Hao, D.; Yang, Y.; Xu, B.; Cai, Z. Appl. Therm. Eng. 2018, 141, 406.
[77]
Wang, X.; Liu, Q.; Wu, S.; Xu, B.; Xu, H. Adv. Mater. 2019, 31, e1807716.
[78]
Bai, W.; Xiang, P.; Liu, H.; Guo, H.; Tang, Z.; Yang, P.; Zou, Y.; Yang, Y.; Gu, Z.; Li, Y. Macromolecules 2022, 55, 6426.
[79]
Wang, H.; Huang, J.; Liu, W.; Huang, J.; Yang, D.; Qiu, X.; Zhang, J. Macromolecules 2022, 55, 8629.
[80]
Chen, J.; Qi, J.; He, J.; Yan, Y.; Jiang, F.; Wang, Z.; Zhang, Y. ACS Appl. Mater. Interfaces 2022, 14, 12748.
[81]
Li, J.; Rao, J.; Pu, K. Biomaterials 2018, 155, 217.
[82]
Liu, L.; Liu, M.-H.; Deng, L.-L.; Lin, B.-P.; Yang, H. J. Am. Chem. Soc. 2017, 139, 11333.
[83]
Su, Y.; Chen, Z.; Tang, X.; Xu, H.; Zhang, Y.; Gu, C. Angew. Chem. Int. Ed. 2021, 60, 24424.
[84]
Guo, C.; Ma, X.; Wang, B. Acta Chim. Sinica 2021, 79, 967 (in Chinese).
[84]
(郭彩霞, 马小杰, 王博, 化学学报, 2021, 79, 967.)
[85]
Yan, X.; Lyu, S.; Xu, X.; Chen, W.; Shang, P.; Yang, Z.; Zhang, G.; Chen, W.; Wang, Y.; Chen, L. Angew. Chem. Int. Ed. 2022, 61, e202201900.
[86]
Jiang, C.; Feng, X.; Wang, B. Acta Chim. Sinica 2020, 78, 466 (in Chinese).
[86]
(蒋成浩, 冯霄, 王博, 化学学报, 2020, 78, 466.)
[87]
Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Chem. Rev. 2021, 121, 1716.
[88]
Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M. A.; Santana, H. M. Mater. Horiz. 2020, 7, 2882.
[89]
Lu, Y.; Zhang, P.; Zhou, Y.; Zhang, R.; Fu, X.; Feng, J.; Zhang, H. Sci. China Chem. 2023, 66, 1078.
[90]
Wang, D.; Lee, M. M. S.; Xu, W.; Shan, G.; Zheng, X.; Kwok, R. T. K.; Lam, J. W. Y.; Hu, X.; Tang, B. Z. Angew. Chem. Int. Ed. 2019, 58, 5628.
[91]
Li, J.; Wang, J.; Han, T.; Hu, X.; Lee, M. M. S.; Wang, D.; Tang, B. Z. Adv. Mater. 2021, 33, 2105999.
[92]
Li, J; Yu, X.; Jiang, Y.; He, S.; Zhang, Y.; Luo, Y.; Pu, K. Adv. Mater. 2020, 33, 2003458.
[93]
Ng, C. W.; Li, J.; Pu, K. Adv. Funct. Mater. 2018, 28, 1804688.
[94]
Fu, Z.; Willams, G. R.; Niu, S.; Wu, J.; Gao, F.; Zhang, X.; Yang, Y.; Li, Y.; Zhu, L. Nanoscale 2020, 12, 14739.
[95]
Yan, P.; Guo, W.; Liang, Z.; Meng, W.; Yin, Z.; Li, S.; Li, M.; Zhang, M.; Yan, J.; Xiao, D.; Zou, R.; Ma, D. Nano Res. 2019, 12, 2341.
[96]
Zhao, H.; Liu, J.-X.; Yang, C.; Yao, S.; Su, H.-Y.; Gao, Z.; Dong, M.; Wang, J.; Rykov, A. L.; Wang, J.; Hou, Y.; Li, W.-X.; Ma, D. CCS Chem. 2021, 3, 2712.
[97]
Wu, C.; Lin, L.; Liu, J.; Zhang, J.; Zhang, F.; Zhou, T.; Rui, N.; Yao, S.; Deng, Y.; Yang, F.; Xu, W.; Luo, J.; Zhao, Y.; Yan, B.; Wen, X.; Rodriguez, J. A.; Ma, D. Nat. Commun. 2020, 11, 5767.
[98]
Kennedy III, J. C.; Datye, A. K. J. Catal. 1998, 179, 375.
[99]
Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. Angew. Chem. Int. Ed. 2014, 53, 11478.
[100]
Wang, R.; Zou, Y.; Hong, S.; Xu, M.; Ling, L. Acta Chim. Sinica 2021, 79, 932 (in Chinese).
[100]
(王瑞兆, 邹云杰, 洪晟, 徐铭楷, 凌岚, 化学学报, 2021, 79, 932.)
[101]
Gu, L.; Zhang, C.; Guo, Y.; Gao, J.; Yu, Y.; Zhang, B. ACS Sustainable Chem. Eng. 2019, 7, 3710.
[102]
Li, X.; Zhang, X.; Everitt, H. O.; Liu, J. Nano Lett. 2019, 19, 1706.
[103]
Gao, Q.; Tu, K.; Li, H.; Zhang, L.; Cheng, Z. Sci. China Chem. 2021, 64, 1242.
[104]
Liu, Y.; Wang, X.; Li, Q.; Yan, T.; Lou, X.; Zhang, C.; Cao, M.; Zhang, L.; Sham, T.-K.; Zhang, Q.; He, L.; Chen, J. Adv. Funct. Mater. 2023, 33, 2210283.
[105]
Liu, Y.; Zhong, Q.; Xu, P.; Huang, H.; Yang, F.; Cao, M.; He, L.; Zhang, Q.; Chen, J. Matter 2022, 5, 1035.
[106]
Chen, G.; Jiang, Z.; Li, A.; Chen, X.; Ma, Z.; Song, H. J. Mater. Chem. A. 2021, 9, 16805.
[107]
Cheng, S.; Guo, P.; Wang, X.; Che, P.; Han, X.; Jin, R.; Heng, L.; Jiang, L. Chem. Eng. J. 2022, 431, 133411.
[108]
Abiola, T. T.; Rioux, B.; Toldo, J. M.; Alarcan, J.; Woolley, J. M.; Turner, M. A. P.; Coxon, D. J. L.; Casal, M. T. D.; Peyrot, C.; Mention, M. M.; Buma, W. J.; Ashfold, M. N. R.; Breauning, A.; Barbatti, M.; Stavros, V. G.; Allais, F. Chem. Sci. 2021, 12, 15239.
[109]
Liu, L.; Liu, Z.; Ren, Y.; Zou, X.; Peng, W.; Li, W.; Wu, P.; Zheng, S.; Wang, X.; Yan, F. Angew. Chem. Int. Ed. 2021, 60, 8948.
[110]
Wu, Z.; Ji, C.; Zhao, X.; Han, Y.; Mullen, K.; Pan, K.; Yin, M. J. Am. Chem. Soc. 2019, 141, 7385.
[111]
Du, X.; Wang, J.; Jin, L.; Deng, S.; Dong, Y.; Lin, S. ACS Appl. Mater. Interfaces 2022, 14, 15225.
[112]
Yang, L.; Lu, X.; Wang, Z.; Xia, H. Polym. Chem. 2018, 9, 2166.
[113]
Son, D. H.; Bae, H. E.; Bae, M. J.; Lee, S.-H.; Cheong, I. W.; Park, Y. I.; Jeong, J.-E.; Kim, J. C. ACS Appl. Polym. Mater. 2022, 4, 3802.
[114]
Huang, Y.; Bisoyi, H. K.; Huang, S.; Wang, M.; Chen, X. M.; Liu, Z.; Yang, H.; Li, Q. Angew. Chem. Int. Ed. 2021, 60, 11247.
[115]
Nie, Z.-Z.; Zuo, B.; Wang, M.; Huang, S.; Chen, X.-M.; Liu, Z.-Y.; Yang, H. Nat. Commun. 2021, 12, 2334.
[116]
Sun, Z.; Wei, C.; Liu, W.; Liu, H.; Liu, J.; Hao, R.; Huang, M.; He, S. ACS Appl. Mater. Interfaces 2021, 13, 33404.
[117]
Bai, W.; Yang, P.; Liu, H.; Zou, Y.; Wang, X.; Yang, Y.; Gu, Z.; Li, Y. Macromolecules 2022, 55, 3493.
Outlines

/