Research Progress of Materials Used for Elemental Halogen Capture
Received date: 2023-08-27
Online published: 2023-11-01
Supported by
National Natural Science Foundation of China(22373014); Natural Science Foundation of Fujian Province(2022J06019)
Elemental halogen, that is fluorine (F2), chlorine (Cl2), bromine (Br2) and iodine (I2), plays an important role in the chemical industry. However, the toxicity, corrosiveness and volatility of elemental halogen pose serious challenges for their safe storage and transportation. Thus, the precuring of these elemental halogen can effectively improve the safety of their usage. Ideal precuring materials for elemental halogen need to meet a variety of requirements, such as stability, selectivity, recyclability, processability, etc., which brings great challenges to the design and synthesis of desired materials. So far, some precuring materials for Cl2 and Br2 have been reported (F2 is not available yet). The summary and review of these materials will help to provide reference for the follow-up materials optimization and design. However, as far as we know, the related review has not been reported yet. Therefore, we give a comprehensive overview of the precuring materials for Cl2 and Br2 including porous organic polymers (POPs), metal-organic frameworks (MOFs), porous organic cages (POCs) and metal halides. The corresponding mechanism and structure-property relationship are discussed in detail. The purpose of this paper is to provide a useful insight into the follow-up materials design for the elemental halogen precuring, and finally get an ideal precuring materials with practical application prospects, so as to improve the usage safety of elemental halogen and reduce the risk of halogen leakage. It is of great significance to environmental protection and sustainable development.
Key words: halogen; adsorption; porous materials; metal halide; redox
Hangqing Lin , Ruoru Ma , Yilan Jiang , Murong Xu , Yangpeng Lin , Kezhao Du . Research Progress of Materials Used for Elemental Halogen Capture[J]. Acta Chimica Sinica, 2024 , 82(1) : 62 -74 . DOI: 10.6023/A23080392
[1] | Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R.; Riedel, S.; Pernice, H. In Ullmann's Encyclopedia of Industrial Chemistry, https://doi.org/10.1002/14356007.a11_293.pub2, Wiley online library, 2020, pp. 1-19. |
[2] | The Essential Chemical Industry-online, http://www.essential-chemicalindustry.org/chemicals/bromine.html (accessed september 20, 2023) |
[3] | U.S. Department of the Interior U.S. Geological Survey; Mineral Commodity Summaries 2023, 2023, pp. 48-49, 90-91. |
[4] | The Essential Chemical Industry-online, http://www.essentialchemical-industry.org/chemicals/iodine.html (accessed september 20, 2023) |
[5] | Niu, Y.-S. Ph.D. Dissertation, University of Chinese Academy of Sciences (Chinese Academy of Sciences Shanghai Institute of Applied Physics), Shanghai, 2022. (in Chinese) |
[5] | (牛永生, 博士论文, 中国科学院大学中国科学院上海应用物理研究所, 上海, 2022.) |
[6] | Finlayson-Pitts, B. J. Nat. Chem. 2013, 5, 724. |
[7] | Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837. |
[8] | Braff, W. A.; Bazant, M. Z.; Buie, C. R. Nat. Commun. 2013, 4, 2346 |
[9] | Lee, J.-H.; Byun, Y.; Jeong, G. H.; Choi, C.; Kwen, J.; Kim, R.; Kim, I. H.; Kim, S. O.; Kim, H.-T. Adv. Mater. 2019, 31, 1970366. |
[10] | Huang, Y.; Xu, Y.; Xu, M.; Zhao, X.; Chen, M. Fronts Endocrinol. 2023, 14, 1150036. |
[11] | Jost, G.; Pietsch, H.; Lengsfeld, P.; Hütter, J.; Sieber, M. A. Invest. Radiol. 2010, 45, 255. |
[12] | Glotz, G.; Lebl, R.; Dallinger, D.; Kappe, C. O. Angew. Chem. Int. Ed. 2017, 56, 13786. |
[13] | Barrett, A. M.; Adams, P. J. Risk Anal. 2011, 31, 1243. |
[14] | Chengdu, Puritong, Sohu News 2023,. (in Chinese) |
[14] | (成都普瑞通, 搜狐新闻, https://www.sohu.com/a/668655838_120723576) |
[15] | Jinshan District Emergency Management Bureau, Sohu News 2022, https://www.sohu.com/a/569261555_121117454. (in Chinese) |
[15] | (金山区应急管理局, 搜狐新闻, https://www.sohu.com/a/569261555_121117454) |
[16] | Zhang, D.-Q.; Xia, D.-F. China Salt Ind. 2016, (03), 47. (in Chinese) |
[16] | (张德强, 夏德富, 中国盐业, 2016, (03), 47.) |
[17] | Yang, M. Jiangsu Salt Sci. Technol. 2006, (04), 13. (in Chinese) |
[17] | (杨梅, 苏盐科技, 2006, (04), 13.) |
[18] | Lu, Y.; Yuan, J.; Du, D.; Sun, B.; Yi, X. GeoSus 2021, 2, 95. |
[19] | Xiao, W.-Q. M.S. Thesis, Taiyuan university of technology, Taiyuan, 2010. (in Chinese) |
[19] | (肖卫强, 硕士论文, 太原理工大学,太原, 2010.) |
[20] | Fan, L.-W. M.S. Thesis, Soochow University, Suzhou, 2016. (in Chinese) |
[20] | (范丽巍, 硕士论文, 苏州大学, 苏州, 2016.) |
[21] | Miao, J.-K.; Leng, K.-L.; Xu, Y.; Sun, W.-H.; Xing, L.-H. Inorg. Chem. Ind. 2010, 42, 54. (in Chinese) |
[21] | (苗钧魁, 冷凯良, 许洋, 孙伟红, 邢丽红, 无机盐工业, 2010, 42, 54.) |
[22] | Slater, A. G.; Cooper, A. I. Science 2015, 348, aaa8075. |
[23] | Li, X.; Chen, K.; Guo, R.; Wei, Z. Chem. Rev. 2023, 123, 10432. |
[24] | Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Science 2017, 357, 673. |
[25] | Song, K. S.; Fritz, P. W.; Coskun, A. Chem. Soc. Rev. 2022, 51, 9831. |
[26] | Yang, X.; Ullah, Z.; Stoddart, J. F.; Yavuz, C. T. Chem. Rev. 2023, 123, 4602. |
[27] | Su, K.; Wang, W.; Du, S.; Ji, C.; Yuan, D. Nat. Commun. 2021, 12, 3703. |
[28] | Tulchinsky, Y.; Hendon, C. H.; Lomachenko, K. A.; Borfecchia, E.; Melot, B. C.; Hudson, M. R.; Tarver, J. D.; Korzyński, M. D.; Stubbs, A. W.; Kagan, J. J.; Lamberti, C.; Brown, C. M.; Dinc?, M. J. Am. Chem. Soc. 2017, 139, 5992. |
[29] | Lee, S.; Kevlishvili, I.; Kulik, H. J.; Kim, H.-T.; Chung, Y. G.; Koh, D.-Y. J. Mater. Chem. A 2022, 10, 24802. |
[30] | Lin, Y.-P.; Xia, B.; Hu, S.; Zhong, Y.; Huang, Y.-E.; Zhang, Z.-Z.; Wu, N.; Wu, Y.-W.; Wu, X.-H.; Huang, X.-Y.; Xiao, Z.; Du, K.-Z. Energy Environ. Mater. 2020, 3, 535. |
[31] | Lin, Y.-P.; Xia, B.; Hu, S.; Liu, Z.; Huang, X.-Y.; Xiao, Z.; Du, K.-Z. J. Mater. Sci. 2022, 57, 18266. |
[32] | Lin, Y.-P.; Huang, X.-Y.; Du, K.-Z. Mater. Chem. Phys. 2022, 280, 125820. |
[33] | Pang, J.; Yuan, S.; Du, D.; Lollar, C.; Zhang, L.; Wu, M.; Yuan, D.; Zhou, H.-C.; Hong, M. Angew. Chem. Int. Ed. 2017, 56, 14622. |
[34] | Chen, D.; Luo, D.; He, Y.; Tian, J.; Yu, Y.; Wang, H.; Sessler, J. L.; Chi, X. J. Am. Chem. Soc. 2022, 144, 16755. |
[35] | Wang, C.; Yang, K.; Xie, Q.; Pan, J.; Jiang, Z.; Yang, H.; Zhang, Y.; Wu, Y.; Han, J. Nano Lett. 2023, 23, 2239. |
[36] | Kurisingal, J. F.; Yun, H.; Hong, C. S. J. Hazard. Mater. 2023, 458, 131835. |
[37] | Pan, T.; Yang, K.; Dong, X.; Han, Y. J. Mater. Chem. A 2023, 11, 5460. |
[38] | Hu, R.; Zhang, X.; Chi, K.-N.; Yang, T.; Yang, Y.-H. ACS Appl. Mater. Interfaces 2020, 12, 30770. |
[39] | Song, W.; Zhang, Y.; Tran, C. H.; Choi, H. K.; Yu, D.-G.; Kim, I. Prog. Polym. Sci. 2023, 142, 101691. |
[40] | Zhang, Z.; Jia, J.; Zhi, Y.; Ma, S.; Liu, X. Chem. Soc. Rev. 2022, 51, 2444. |
[41] | Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Chem. Rev. 2020, 120, 8814. |
[42] | Qian, Z.; Wang, Z. J.; Zhang, K. A. I. Chem. Mater. 2021, 33, 1909. |
[43] | Xie, L.; Zheng, Z.; Lin, Q.; Zhou, H.; Ji, X.; Sessler, J. L.; Wang, H. Angew. Chem. Int. Ed. 2022, 61, e202113724. |
[44] | Liu, T.; Zhao, Y.; Song, M.; Pang, X.; Shi, X.; Jia, J.; Chi, L.; Lu, G. J. Am. Chem. Soc. 2023, 145, 2544. |
[45] | Zhang, X.; Maddock, J.; Nenoff, T. M.; Denecke, M. A.; Yang, S.; Schr?der, M. Chem. Soc. Rev. 2022, 51, 3243. |
[46] | Ma, Y.-C.; Yao, Y.-X.; Fu, Y.; Liu, C.-B.; Hu, B.; Che, G.-B. Prog. Chem. 2023, 35, 1097. (in Chinese) |
[46] | (马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波, 化学进展, 2023, 35, 1097.) |
[47] | Al-Naddaf, Q.; Rownaghi, A. A.; Rezaei, F. Chem. Eng. J. 2020, 384, 123251. |
[48] | Lin, Y.; Kong, C.; Zhang, Q.; Chen, L. Adv. Energy Mater. 2017, 7, 1601296. |
[49] | Rosen, A. S.; Mian, M. R.; Islamoglu, T.; Chen, H.; Farha, O. K.; Notestein, J. M.; Snurr, R. Q. J. Am. Chem. Soc. 2020, 142, 4317. |
[50] | Bloch, E. D.; Queen, W. L.; Chavan, S.; Wheatley, P. S.; Zadrozny, J. M.; Morris, R.; Brown, C. M.; Lamberti, C.; Bordiga, S.; Long, J. R. J. Am. Chem. Soc. 2015, 137, 3466. |
[51] | Yang, S.; Sun, J.; Ramirez-Cuesta, A. J.; Callear, S. K.; David, W. I. F.; Anderson, D. P.; Newby, R.; Blake, A. J.; Parker, J. E.; Tang, C. C.; Schr?der, M. Nat. Chem. 2012, 4, 887. |
[52] | Rieth, A. J.; Tulchinsky, Y.; Dinc?, M. J. Am. Chem. Soc. 2016, 138, 9401. |
[53] | DeCoste, J. B.; Browe, M. A.; Wagner, G. W.; Rossin, J. A.; Peterson, G. W. Chem. Commun. 2015, 51, 12474. |
[54] | Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2008, 105, 11623. |
[55] | Azbell, T. J.; Mandel, R. M.; Lee, J.-H.; Milner, P. J. ACS Appl. Mater. Interfaces 2022, 14, 53928. |
[56] | Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. |
[57] | Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. |
[58] | Maughan, A. E.; Ganose, A. M.; Scanlon, D. O.; Neilson, J. R. Chem. Mater. 2019, 31, 1184. |
[59] | Sakai, N.; Haghighirad, A. A.; Filip, M. R.; Nayak, P. K.; Nayak, S.; Ramadan, A.; Wang, Z.; Giustino, F.; Snaith, H. J. J. Am. Chem. Soc. 2017, 139, 6030. |
[60] | Zhou, L.; Liao, J.-F.; Huang, Z.-G.; Wang, X.-D.; Xu, Y.-F.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. ACS Energy Lett. 2018, 3, 2613. |
[61] | Vargas, B.; Ramos, E.; Pérez-Gutiérrez, E.; Alonso, J. C.; Solis-Ibarra, D. J. Am. Chem. Soc. 2017, 139, 9116. |
[62] | Lin, Y.-P.; Hu, S.; Xia, B.; Fan, K.-Q.; Gong, L.-K.; Kong, J.-T.; Huang, X.-Y.; Xiao, Z.; Du, K.-Z. J. Phys. Chem. Lett. 2019, 10, 5219. |
[63] | Yuan, S.; Lu, W.; Chen, Y.-P.; Zhang, Q.; Liu, T.-F.; Feng, D.; Wang, X.; Qin, J.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137, 3177. |
[64] | Salai Cheettu Ammal, S.; Ananthavel, S. P.; Venuvanalingam, P. J. Phys. Chem. A 1997, 101, 1155. |
[65] | Yang, M.; Qiu, F.; M. El-Sayed, E.-S.; Wang, W.; Du, S.; Su, K.; Yuan, D. Chem. Sci. 2021, 12, 13307. |
[66] | Luo, D.; He, Y.; Tian, J.; Sessler, J. L.; Chi, X. J. Am. Chem. Soc. 2022, 144, 113. |
[67] | Yoo, S. J.; Evanko, B.; Wang, X.; Romelczyk, M.; Taylor, A.; Ji, X.; Boettcher, S. W.; Stucky, G. D. J. Am. Chem. Soc. 2017, 139, 9985. |
[68] | Goodenough, R. D.; Mills, J. F.; Place, J. Environ. Sci. Technol. 1969, 3, 854. |
[69] | Sonnenberg, K.; Mann, L.; Redeker, F. A.; Schmidt, B.; Riedel, S. Angew. Chem. Int. Ed. 2020, 59, 5464. |
[70] | Ghalami, Z.; Ghoulipour, V.; Khanchi, A. R. J. Comput. Chem. 2020, 41, 949. |
[71] | Flerlage, H.; Slootweg, J. C. Nat. Rev. Chem. 2023, 7, 593. |
/
〈 |
|
〉 |