Article

Study on Performance of Copper Doped Carbon Nitride Electrocatalyzing Nitrate to Produce Ammonia

  • Jing Han ,
  • Runhua Liao ,
  • Wenqiang Deng ,
  • Boyu Liang ,
  • Yuqing Zhou ,
  • Shuai Ren ,
  • Yan Hong
Expand
  • School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, Jiangxi, China

Received date: 2023-11-21

  Online published: 2024-02-21

Supported by

Jingdezhen municipal Science and Technology program projects(20234NY006); Jingdezhen municipal Science and Technology program projects(20234SF009); Jingdezhen Ceramic University graduate innovation and entrepreneurship project(JYC202312); Undergraduate innovation program(X202310408145); Undergraduate innovation program(X202310408140)

Abstract

As the increasing demand for ammonia in other industries such as energy, the ammonia production now available can no longer meet the needs of industrial production, and the existing Haber-Bosch process for the production of NH3 will cause harm to the atmospheric environment. Therefore, there is an urgent need to find a new method that is compatible with or can replace the existing ammonia production process. Nitrate wastewater contains a large amount of nitrogen, and NH3 is one of the nitrate reduction products, the reduction of nitrate into ammonia can not only reduce the environmental pollution of nitrate nitrogen, but also alleviate the industrial demand for ammonia, nitrate wastewater treatment methods are generally physical, chemical and biological, but there are shortcomings of long cycle time and high cost. The electrocatalytic method is convenient, safe and can catalyze the synthesis of NH3 at room temperature and pressure, which makes the electrocatalytic synthesis of NH3 become a hot research topic in recent years. In this experiment, 3-amino-1,2,4-triazole was loaded into alumina crucible and used as the precursor to synthesize C3N5 by pyrolysis method in Muffle furnace, and then Cu-C3N5 was synthesized under calcination conditions by modulating the ratio of copper elements, which resulted in a series of C3N5-based catalysts with differences in material morphology, crystal conformation, and chemical valence state, including five catalysts of different proportions were synthesized. These catalysts were tested, then their electrochemical performance and electrocatalytic reduction of nitrate to produce ammonia performance were evaluated, and it was found that the ammonia yield and Faraday efficiency could reach 0.541 mmol•h−1•mgcat−1 and 87.79% by 1 h electrolysis experiments in a mixed electrolyte solution of 0.1 mol/L KOH+0.1 mol/L KNO3, which are much higher than that of C3N5, and the catalyst has good activity and stability in cyclic and long time experiments, indicating that it has some research value in the field of electrocatalytic nitrate.

Cite this article

Jing Han , Runhua Liao , Wenqiang Deng , Boyu Liang , Yuqing Zhou , Shuai Ren , Yan Hong . Study on Performance of Copper Doped Carbon Nitride Electrocatalyzing Nitrate to Produce Ammonia[J]. Acta Chimica Sinica, 2024 , 82(3) : 295 -302 . DOI: 10.6023/A23110508

References

[1]
Lee, W. S.; Zhou, K. J.; Hepting, M. Nat. Phys. 2020, 17, 53.
[2]
Liu, H.; Lang, X.; Zhu, C. Angew. Chem. Int. Ed. 2022, 61, e202202556.
[3]
Hu, Q.; Qin, Y.; Wang, X. CCS Chem. 2022, 4, 2053.
[4]
Wang, J. H.; Wang, S.; Tong, X. H. J. Shaanxi University Sci. Tec. 2017, 35, 34 (in Chinese).
[4]
(王家宏, 王思, 童新豪, 陕西科技大学学报, 2017, 35, 34.)
[5]
MacFarlane, D. R.; Cherepanov, P. V.; Choi, J. Joule 2020, 4, 1186.
[6]
Clark, C. A.; Reddy, C. P.; Xu, H. ACS Catal. 2019, 10, 494.
[7]
Li, M. M.S. Thesis, China University of Petroleum (East China), Qingdao, 2014 (in Chinese).
[7]
(李猛, 硕士论文, 中国石油大学(华东), 青岛, 2014.)
[8]
Gu, L.; Kuang, M.; Chen, J. Chinese J. Struc. Chem. 2023, 42, 100067.
[9]
Wu, Z. Y.; Song, Y. H.; Liu, Y. B. Chem. Catalysis 2023, 3, 100786.
[10]
Hong, Q. L.; Zhou, J.; Zhai, Q. G. Chem. Commun. 2021, 57, 11621.
[11]
Cheng, J.; Sun, W.; Dai, G. Fuel 2023, 332.
[12]
Xu, D.; Li, Y.; Yin, L. Front. Environ. Sci. Eng. 2018, 12, 9.
[13]
Theerthagiri, J.; Park, J.; Das, H. T. Environ. Chem. Lett. 2022, 20, 2929.
[14]
Dai, C. C.; Sun, Y. M.; Chen, G. Angew. Chem. Int. Ed. 2020, 59, 9418.
[15]
Long, J.; Chen, S. M.; Zhang, Y. L. Angew. Chem. Int. Ed. 2020, 59, 9711.
[16]
Chen, D.; Zhang, S. C.; Bu, X. M. Nano Energy 2022, 98.
[17]
Niu, Z. D.; Fan, S. Y.; Li, X. Y. ACS Appl. Energy Mater. 2022, 5, 3339.
[18]
Chen, G. F.; Yuan, Y. F.; Jiang, H. F. Nat. Energy. 2020, 5, 605.
[19]
Dima, G. E.; Beltramo, G. L.; Koper, M. T. M. Electrochim. Acta 2005, 50, 4318.
[20]
Zhao, H.; Wang, F. D.; Qian, G. L. Ind. Water Treat. 2024, 44, 60 (in Chinese).
[20]
(赵慧, 王富东, 钱光磊, 工业水处理, 2024, 44, 60.)
[21]
Reyter, D.; Chamoulaud, G.; Bélanger, D. J. Electroanal. Chem. 2006, 596, 13.
[22]
Fu, X. B.; Zhao, X. G.; Hu, X. B. Appl. Mater. Today. 2020, 19.
[23]
Wang, X. D.; Zhu, M. Q.; Zeng, G. S. Nanoscale 2020, 12, 9385.
[24]
Sun, J.; Alam, D.; Daiyan, R. Energy Environ. Sci. 2021, 14, 865.
[25]
Wang, Y. T.; Zhou, W.; Jia, R. R. Angew. Chem. Int. Ed. 2020, 59, 5350.
[26]
Zou, Y. J.; Xiao, K.; Qin, Q. ACS Nano 2021, 15, 6551.
[27]
Liu, T. Y.; Yang, G. J.; Wang, W. Environ. Res. 2020, 188, 109741.
[28]
Li, K.; Cai, W.; Zhang, Z. C. Chem. Eng. J. 2022, 435, 135017.
[29]
Bai, J. L.; Yang, B. S.; Liu, B. Shanxi Daxue Xuebao, Ziran Kexueban 2022, 45, 1319 (in Chinese).
[29]
(白惊雷, 杨斌盛, 刘斌, 山西大学学报(自然科学版), 2022, 45, 1319.)
[30]
Ma, C.; Yu, Z. G.;, J. Wei, J. J.. Appl. Catal. B 2022, 319.
[31]
Nam, K. B.; Lee, S. H.; Hong, S. C. Appl. Surf. Sci. 2021, 544.
[32]
Feng, W. H, ; Fang, J. Z.; Zhou, G. Y. Mol. Catal. 2017, 434, 69.
[33]
Li, X. W.; Wang, B.; Yin, W. X. Acta Phys.-Chim. Sin. 2020, 36, 1902001.
[34]
Wang, B. M.S. Thesis, Shanxi University, Taiyuan, 2021 (in Chinese).
[34]
(王波, 杨斌盛, 刘斌, 硕士论文, 山西大学, 太原, 2021.)
[35]
Song, T. L.; Zou, M. S.; Lu, D. F. Textbook of X-ray Photoelectron Spectroscopy Data Analysis, Beijing Institute of Technology Press, Beijing, 2022, p. 468 (in Chinese).
[35]
(宋廷鲁, 邹美帅, 鲁德凤, X射线光电子能谱数据分析, 北京理工大学出版社, 北京(自然科学版), 2022, p. 468.)
[36]
Yu, K. Q. M.S. Thesis, Jilin University, Changchun, 2023 (in Chinese).
[36]
(于凯强, 硕士论文, 吉林大学, 长春(自然科学版), 2023.)
[37]
Lin, Y. X.; Zhang, S. N.; Xue, Z. H. Nat. Commun. 2019, 10, 4380.
[38]
Liu, S. Y. M.S. Thesis, Inner Mongolia University, Hohhot, 2022 (in Chinese).
[38]
(刘思媛, 硕士论文, 内蒙古大学, 呼和浩特, 2022.)
Outlines

/