Original article

Three-Dimensional Porous Structure and Zincophile Gradient Enabling Dendrite Free Zinc Anode

  • Rui Song ,
  • Mingqin Zhao ,
  • Shuai Wang ,
  • Yao Lu ,
  • Xiaobing Bao ,
  • Qiaomei Luo ,
  • Lei Gou ,
  • Xiaoyong Fan ,
  • Donglin Li
Expand
  • School of Material Science and Engineering, Chang’an University, Xi’an 710061, China

Received date: 2024-01-18

  Online published: 2024-03-04

Supported by

National Natural Science Foundation of China(22179011); Key Research and Development Program of Shaanxi Province- General Industrial Project(2023-YBGY-445)

Abstract

Zn-ion batteries have been considered as one of the most promising grid storage devices due to their high energy densities, high safety, and low cost. However, the Zn anode suffers dendrite growth, hydrogen evolution and surface passivation, resulting in low coulombic efficiency, low Zn utilization, and poor cyclability. In this work, PbSn alloy is firstly electrodeposited in the self-prepared three-dimensional (3D) porous Cu, then a Zn layer is electrodeposited on it, finally the partial Zn layer on outer pores is replaced by PbSn alloy, which will transform into PbSO4 in ZnSO4-based electrolyte, and a Zn electrode with 3D porous structure and zincophile gradient is achieved 3D Cu@PbSn@Zn@PbSn (3D Cu@PSZPS). The 3D porous structure can provide high specific area, small and uniform current distribution, as a result enhance Zn plating capacity, inhibit Zn dendrites growth, hydrogen evolution and passivation. The PbSn alloy layer in inner pores can induce Zn plating from inner to outer pores, inhibit dendrites growth; high hydrogen evolution overpotential feature of Pb and Sn can inhibit hydrogen evolution, and also inhibit the passivation caused by increase of pH value. This modification strategy effectively circumvents the inherent limitations associated with solely relying on a single strategy. Therefore, this electrode demonstrates excellent electrochemical performance. It can stably cycle for more than 900 times at 5 mA•cm-2, 1 mAh•cm-2 with a high first coulombic efficiency of 99.66%, low first nucleation potential of 16.4 mV. The symmetrical cell assembled using this electrode can stably cycle for more than 700 h. The MnO2||3D Cu@PSZPS full cell shows a high reversible specific capacity of 238.7 mAh•g-1 at 0.3 A•g-1 and a capacity retention of 79.4% over 300 cycles, and can be stably cycling more than 2000 times under the current density of 1.8 A•g-1.

Cite this article

Rui Song , Mingqin Zhao , Shuai Wang , Yao Lu , Xiaobing Bao , Qiaomei Luo , Lei Gou , Xiaoyong Fan , Donglin Li . Three-Dimensional Porous Structure and Zincophile Gradient Enabling Dendrite Free Zinc Anode[J]. Acta Chimica Sinica, 2024 , 82(4) : 426 -434 . DOI: 10.6023/A24010019

References

[1]
Zampardi, G.; La Mantia, F. Nat. Commun. 2022, 13, 687.
[2]
Li, X. Y.; Wang, L.; Fu, Y.-H.; Dang, H.; Wang, D. H.; Ran, F. Nano Energy 2023, 116, 108858.
[3]
Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T. Nano-Micro Lett. 2022, 14, 42.
[4]
Wang, K. X.; Fan, X. Y.; Chen, S. J.; Deng, J. K.; Zhang, L. L.; Jing, M. S.; Li, J. L.; Gou, L.; Li, D. L.; Ma, Y. Small 2022, 19, 2206287.
[5]
Zhao, X. Y.; Liang, X. Q.; Li, Y.; Chen, Q. G.; Chen, M. H. Energy Storage Mater. 2021, 42, 533.
[6]
Zhang, Y.; Zheng, X.; Wang, N.; Lai, W. H.; Liu, Y.; Chou, S. L.; Liu, H. K.; Dou, S. X.; Wang, Y. X. Chem. Sci. 2022, 13, 14246.
[7]
Zhou, L. F.; Du, T.; Li, J. Y.; Wang, Y. S.; Gong, H.; Yang, Q. R.; Chen, H.; Luo, W. B.; Wang, J. Z. Mater. Horiz. 2022, 9, 2722.
[8]
Qin, R. Z.; Wang, Y. T.; Yao, L.; Yang, L. Y.; Zhao, Q. H.; Ding, S. X.; Liu, L. L.; Pan, F. Nano Energy 2022, 98, 107333.
[9]
Zhu, Y. Z.; Guan, P. Y.; Zhu, R. B.; Zhang, S.; Feng, Z. H.; Li, M. Y.; Wan, T.; Hu, L.; Liu, Y. J.; Li, Q.; Yu, J.; Chu, D. W. J. Energy Chem. 2023, 87, 61.
[10]
Zhou, M.; Guo, S.; Fang, G. Z.; Sun, H. M.; Cao, X. X.; Zhou, J.; Pan, A. Q.; Liang, S. Q. J. Energy Chem. 2021, 55, 549.
[11]
Wang, C.; Wang, D. D.; Lv, D.; Peng, H. L.; Song, X. X.; Yang, J.; Qian, Y. T. Adv. Energy Mater. 2023, 13, 2204388.
[12]
Lu, H. Y.; Liu, L. Y.; Zhang, J. K.; Xu, J. T. J. Colloid Interface Sci. 2022, 617, 422.
[13]
Cui, Y.; Zhao, Q.; Wu, X.; Chen, X.; Yang, J.; Wang, Y.; Qin, R.; Ding, S.; Song, Y.; Wu, J.; Yang, K.; Wang, Z.; Mei, Z.; Song, Z.; Wu, H.; Jiang, Z.; Qian, G.; Yang, L.; Pan, F. Angew. Chem., Int. Ed. 2020, 59, 16594.
[14]
Fan, X. Y.; Yang, H.; Feng, B.; Zhu, Y. Q.; Wu, Y.; Sun, R. B.; Gou, L.; Xie, J.; Li, D. L.; Ding, Y. L. Chem. Eng. J. 2022, 445, 136799.
[15]
Ji, H. M.; Xie, C. L.; Zhang, Q.; Li, Y. X.; Li, H. H.; Wang, H. Y. Acta Chim. Sinica 2023, 81, 29. (in Chinese)
[15]
(姬慧敏, 谢春霖, 张旗, 李熠鑫, 李欢欢, 王海燕, 化学学报, 2023, 81, 29.)
[16]
Liu, B.; Wang, S.; Wang, Z.; Lei, H.; Chen, Z.; Mai, W. Small 2020, 16, 2001323.
[17]
Yang, J. L.; Yang, P. H.; Yan, W. Q.; Zhao, J. W.; Fan, H. J. Energy Storage Mater. 2022, 51, 259.
[18]
Yin, Y.; Wang, S.; Zhang, Q.; Song, Y.; Chang, N.; Pan, Y.; Zhang, H.; Li, X. Adv. Mater. 2020, 32, 1906803.
[19]
Li, Y. M.; Guo, Q.; Wu, Y.; Ying, D. F.; Yu, Y. N.; Chi, T. S.; Xia, S. J.; Zhou, X. F.; Liu, Z. P. Adv. Funct. Mater. 2023, 33, 2214523.
[20]
Zhao, R.; Dong, X.; Liang, P.; Li, H.; Zhang, T.; Zhou, W.; Wang, B.; Yang, Z.; Wang, X.; Wang, L.; Sun, Z.; Bu, F.; Zhao, Z.; Li, W.; Zhao, D.; Chao, D. Adv. Mater. 2023, 35, 2209288.
[21]
Zhao, Z. M.; Lai, J.; Ho, D. T.; Lei, Y. J.; Yin, J.; Chen, L.; Schwingenschl?gl, U.; Alshareef, H. N. ACS Energy Lett. 2022, 8, 608.
[22]
Wang, Y. H.; Zhao, R.; Liu, M. Q.; Yang, J. J.; Zhang, A. Q.; Yue, J. S.; Wu, C.; Bai, Y. Adv. Energy Mater. 2023, 13, 2302707.
[23]
Kang, L.; Zheng, J.; Yue, K.; Yuan, H.; Luo, J.; Wang, Y.; Liu, Y.; Nai, J.; Tao, X. Small 2023, 19, 2304094.
[24]
Shi, X.; Xie, J. H.; Wang, J.; Xie, S. L.; Yang, Z. J.; Lu, X. H. Nat. Commun. 2024, 15, 302.
[25]
Shen, F.; Du, H.; Qin, H.; Wei, Z.; Kuang, W.; Hu, N.; Lv, W.; Yi, Z.; Huang, D.; Chen, Z.; He, H. Small 2023, 25, 2305119.
[26]
Zhu, K. P.; Wu, L. Y.; Guo, C.; Pu, J.; Liu, Y.; Chen, X.; Chen, Y. T.; Xue, P.; Han, J.; Yao, Y. G. Adv. Funct. Mater. 2023, 33, 2305098.
[27]
Gao, Y.; Cao, Q.; Pu, J.; Zhao, X.; Fu, G.; Chen, J.; Wang, Y.; Guan, C. Adv. Mater. 2023, 35, 2207573.
[28]
Li, J.; Zou, P. C.; Chiang, S. W.; Yao, W. T.; Wang, Y.; Liu, P.; Liang, C. W.; Kang, F. Y.; Yang, C. Energy Storage Mater. 2020, 24, 700.
[29]
Cao, Q.; Gao, Y.; Pu, J.; Zhao, X.; Wang, Y.; Chen, J.; Guan, C. Nat. Commun. 2023, 14, 641.
[30]
Fan, X. Y.; Yang, H.; Wang, X. X.; Han, J. X.; Wu, Y.; Gou, L.; Li, D. L.; Ding, Y. L. Adv. Mater. Interfaces 2021, 8, 2002184.
[31]
Liang, G. J.; Zhu, J. X.; Yan, B. X.; Li, Q.; Chen, A.; Chen, Z.; Wang, X. Q.; Xiong, B.; Fan, J.; Xu, J.; Zhi, C. Y. Energy Environ. Sci. 2022, 15, 1086.
[32]
Shen, Z. X.; Luo, L.; Li, C. W.; Pu, J.; Xie, J. P.; Wang, L. T.; Huai, Z.; Dai, Z. Y.; Yao, Y. G.; Hong, G. Adv. Energy Mater. 2021, 11, 2100214.
[33]
Wang, S.; Fan, X. Y.; Cui, Y.; Gou, L.; Wang, X. G.; Li, D. Acta Chim. Sinica 2019, 77, 551. (in Chinese)
[33]
(王珊, 樊小勇, 崔宇, 苟蕾, 王新刚, 李东林, 化学学报, 2019, 77, 551.)
[34]
Tao, F.; Liu, Y.; Ren, X. Y.; Wang, J.; Zhou, Y. Z.; Miao, Y. J.; Ren, F. Z.; Wei, S. Z.; Ma, J. M. J. Energy Chem. 2022, 66, 397.
[35]
Fan, X. Y.; Zhu, Y. Q.; Wu, Y.; Zhang, S.; Xu, L.; Gou, L.; Li, D. L. Chem. J. Chin. Univ. 2022, 43, 65. (in Chinese)
[35]
(樊小勇, 朱永强, 毋妍, 张帅, 许磊, 苟蕾, 李东林, 高等学校化学学报, 2022, 43, 65.)
[36]
Wu, Y. C.; Du, H.; Zhu, J. X.; Xu, N.; Zhou, L.; Mai, L. Q. Chem. J. Chin. Univ. 2023, 44, 61. (in Chinese)
[36]
(吴育才, 杜寰, 朱杰鑫, 许诺, 周亮, 麦立强, 高等学校化学学报, 2023, 44, 61.)
[37]
Xu, J.; Li, X. G.; Wang, Z. L.; Dong, C. F. Chin. J. of Nonferrous Met. 2004, 14, 1217. (in Chinese)
[37]
(徐璟, 李晓刚, 王泽力, 董超芳, 中国有色金属学报, 2004, 14, 1217.)
[38]
Li, H.; Guo, C.; Zhang, T.; Xue, P.; Zhao, R.; Zhou, W.; Li, W.; Elzatahry, A.; Zhao, D.; Chao, D. Nano Lett. 2022, 22, 4223.
[39]
Ruan, P.; Chen, X.; Qin, L.; Tang, Y.; Lu, B.; Zeng, Z.; Liang, S.; Zhou, J. Adv. Mater. 2023, 35, 2300577.
[40]
Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Nat. Energy 2016, 1, 16039.
[41]
Fan, X. Y.; Zhang, S.; Zhu, Y. Q.; Jing, M. S.; Wang, K. X.; Zhang, L. L.; Li, J. L.; Xu, L.; Gou, L.; Li, D. L. Acta Chim. Sinica 2022, 80, 517. (in Chinese)
[41]
(樊小勇, 张帅, 朱永强, 敬茂森, 王凯鑫, 张露露, 李巨龙, 许磊, 苟蕾, 李东林, 化学学报, 2022, 80, 517.)
Outlines

/