Original article

Stable Zinc Anodes through Synergistic Copper Etching and Zincophilic Polyanionic Crosslinking Membrane

  • Zaitao Hao ,
  • Jianfei Zhao ,
  • Huitong Li ,
  • Zhan Li ,
  • Lang Pan ,
  • Jiang Li
Expand
  • School of Materials Science and Engineering, Chang'an University, Xi'an 710061

Received date: 2024-01-08

  Online published: 2024-04-02

Supported by

National Natural Science Foundation of China(22008011); National College Student’s Innovation and Entrepreneurship Training Program(S202310710274); Shaanxi Fundamental Science Research Project for Chemistry & Biology(22JHQ024)

Abstract

Rechargeable aqueous zinc-based batteries offer several advantages, including high capacity, high energy density, low redox potential, low cost-effectiveness, and good safety, making them a viable option for energy storage alternatives. However, the dendrite growth and side reactions on the zinc metal anode during the galvanization/stripping process significantly decrease the Coulombic Efficiency (CE), reversibility and hinder their practical application. Therefore, we have developed a simple, and effective method to solve this problem. Firstly, a polyanionic crosslinked polymer film (referred to as PZ, where P represents PSS and Z represents ZnCl2) was deposited on zinc foil using an electrochemical deposition method, resulting from the reaction of sodium polystyrene sulfonate (PSS) and zinc chloride. Secondly, a displacement reaction is employed to introduce the chemically inert copper metal that is zinophilic, resulting in a cross-linked polymer with zinophilic polyanion and a copper etching protective layer (denoted as PZC, where C represents Cu). The rich sulfonate acid groups can promote the exsolution of [Zn(H2O)6]2+, improve the interface transfer of Zn2+, and repel the contact between SO42- and the zinc anode. Through reconstructing the copper etching protective layer, the high zinc affinity of copper promotes deposition kinetics, while the chemical inertness of copper suppresses the occurrence of side reactions. The results indicate that at a high current density of 5 mA•cm-2, PZC@Zn//PZC@Zn symmetric cells have a lifespan of up to 4055 h (31-fold enhancement over the performance of the bare zinc symmetric cells), and a cumulative electroplating capacity of 10.14 Ah•cm-2. In addition, Ti//PZC@Zn half-cell demonstrates a CE of 98.28%, showcasing stable and reversible galvanization/stripping process. Furthermore, the YP-50F//PZC@Zn zinc-ion hybrid supercapacitor display stable cycling performance with 15000 cycles at 2 A•g-1 and deliver a discharge specific capacity of up to 82.35 mAh•g-1. The α-MnO2//PZC@Zn aqueous zinc-ion batteries exhibit a discharge-specific capacity of 103.57 mAh•g-1 after 2000 cycles at 1 A•g-1 with a CE of 99.58%. This study gives a novel approach to design advanced dendrite-free zinc metal anodes and presents promising implications for future development.

Cite this article

Zaitao Hao , Jianfei Zhao , Huitong Li , Zhan Li , Lang Pan , Jiang Li . Stable Zinc Anodes through Synergistic Copper Etching and Zincophilic Polyanionic Crosslinking Membrane[J]. Acta Chimica Sinica, 2024 , 82(4) : 416 -425 . DOI: 10.6023/A24010006

References

[1]
Chen, J. Acta Chim. Sinica 2017, 75, 127. (in Chinese)
[1]
(陈军, 化学学报, 2017, 75, 127.)
[2]
Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Nat. Energy. 2016, 1, 1.
[3]
Cui, M.; Xiao, Y.; Kang, L.; Du, W.; Gao, Y.; Sun, X.; Zhou, Y.; Li, X.; Li, H.; Jiang, F.; Zhi, C. ACS Appl. Energy Mater. 2019, 2, 6490.
[4]
Zhang, Q.; Luan, J.; Tang, Y.; Ji, X.; Wang, H. Angew. Chem. Int. Ed. 2020, 59, 13180.
[5]
Yang, J. L.; Li, J.; Zhao, J. W.; Liu, K.; Yang, P.; Fan, H. J. Adv. Mater. 2022, 34, 2022382.
[6]
Ji, H.-M.; Xie, C.-L.; Zhang, Q.; Li, Y.-X.; Li, H.-H.; Wang, H.-Y. Acta Chim. Sinica 2023, 81, 29. (in Chinese)
[6]
(姬慧敏, 谢春霖, 张旗, 李熠鑫, 李欢欢, 王海燕, 化学学报, 2023, 81, 29.)
[7]
Dong, Y.; Miao, L.; Ma, G.; Di, S.; Wang, Y.; Wang, L.; Xu, J.; Zhang, N. Chem. Sci. 2021, 12, 5843.
[8]
Song, X.; He, H.; Aboonasr Shiraz, M. H.; Zhu, H.; Khosrozadeh, A.; Liu, J. Chem. Commun. 2021, 57, 1246.
[9]
Cao, L.; Li, D.; Hu, E.; Xu, J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X.-Q.; Wang, C. J. Am. Chem. Soc. 2020, 142, 21404.
[10]
Cao, L.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C.; Chen, L.; Vatamanu, J.; Hu, E.; Hourwitz, M. J.; Ma, L.; Ding, M.; Li, Q.; Hou, S.; Gaskell, K.; Fourkas, J. T.; Yang, X.-Q.; Xu, K.; Borodin, O.; Wang, C. Nat. Nanotechnol. 2021, 16, 902.
[11]
Zhu, Y.; Yin, J.; Zheng, X.; Emwas, A.-H.; Lei, Y.; Mohammed, O. F.; Cui, Y.; Alshareef, H. N. Energy Environ. Sci. 2021, 14, 4463.
[12]
Han, J.; Mariani, A.; Varzi, A.; Passerini, S. J. Power Sources 2021, 485, 229329.
[13]
Guo, W.; Cong, Z.; Guo, Z.; Chang, C.; Liang, X.; Liu, Y.; Hu, W.; Pu, X. Energy Storage Mater. 2020, 30, 104.
[14]
Zhou, Y.; Wang, X.; Shen, X.; Shi, Y.; Zhu, C.; Zeng, S.; Xu, H.; Cao, P.; Wang, Y.; Di, J.; Li, Q. J. Mater. Chem. A 2020, 8, 11719.
[15]
Li, S.; Fu, J.; Miao, G.; Wang, S.; Zhao, W.; Wu, Z.; Zhang, Y.; Yang, X. Adv. Mater. 2021, 33, 2008424.
[16]
Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Energy Storage Mater. 2020, 27, 205.
[17]
Wang, Y.; Chen, Y.; Liu, W.; Ni, X.; Qing, P.; Zhao, Q.; Wei, W.; Ji, X.; Ma, J.; Chen, L. J. Mater. Chem. A 2021, 9, 8452.
[18]
Dong, L.; Yang, W.; Yang, W.; Tian, H.; Huang, Y.; Wang, X.; Xu, C.; Wang, C.; Kang, F.; Wang, G. Chem. Eng. J. 2020, 384, 123355.
[19]
Xia, A.; Pu, X.; Tao, Y.; Liu, H.; Wang, Y. Appl. Surf. Sci. 2019, 481, 852.
[20]
Anand, A.; Ji Dixit, R.; Verma, A.; Basu, S. Energy Technol. 2023, 2300698.
[21]
Jiao, S.; Fu, J.; Wu, M.; Hua, T.; Hu, H. ACS Nano 2021, 16, 1013.
[22]
Liu, M.-C.; Tian, C.-Y.; Zhang, D.-T.; Zhang, Y.-S.; Zhang, B.-M.; Wang, Y.-Y.; Li, C.-Y.; Liu, M.-J.; Gu, B.; Zhao, K.; Kong, L.-B.; Chueh, Y.-L. Nano Energy 2022, 103, 107805.
[23]
Liu, X.; Han, Q.; Ma, Q.; Wang, Y.; Liu, C. Small 2022, 18, 2203327.
[24]
Zhao, K.; Wang, C.; Yu, Y.; Yan, M.; Wei, Q.; He, P.; Dong, Y.; Zhang, Z.; Wang, X.; Mai, L. Adv. Mater. Interfaces 2018, 5, 1800848.
[25]
Labriola, L.; Jadoul, M. Nephrol. Dial. Transplant. 2020, 35, 1455.
[26]
Kwak, J. C. T.; Nelson, R. W. P. J. Phys. Chem. 1978, 82, 2388.
[27]
Zhou, J.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y.; Huang, R.; Wei, G.; Liu, A.; Li, L.; Chen, R. Adv. Mater. 2021, 33, 2101649.
[28]
Zou, P.; Nykypanchuk, D.; Doerk, G.; Xin, H. L. ACS Appl. Mater. Interfaces 2021, 13, 60092.
[29]
Wang, H.; Chen, Y.; Yu, H.; Liu, W.; Kuang, G.; Mei, L.; Wu, Z.; Wei, W.; Ji, X.; Qu, B.; Chen, L. Adv. Funct. Mater. 2022, 32, 2205600.
[30]
Liang, S.; Sui, G.; Li, J.; Guo, D.; Luo, Z.; Xu, R.; Yao, H.; Wang, C.; Chen, S. Int. J. Hydrogen Energy 2022, 47, 11190.
[31]
Su, Y.; Li, S.; He, D.; Yu, D.; Liu, F.; Shao, N.; Zhang, Z. ACS Sustainable Chem. Eng. 2018, 6, 11989.
[32]
Fan, L.; Li, Z.; Kang, W.; Cheng, B. Renewable Energy 2020, 155, 309.
[33]
Zhang, Q.; Luan, J.; Huang, X.; Zhu, L.; Tang, Y.; Ji, X.; Wang, H. Small 2020, 16, 2000929.
[34]
Liang, P.; Yi, J.; Liu, X.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. Adv. Funct. Mater. 2020, 30, 1908528.
[35]
Lu, H.; Liu, L.; Zhang, J.; Xu, J. J. Colloid Interface Sci. 2022, 617, 422.
[36]
Zhao, Z.; Wang, R.; Peng, C.; Chen, W.; Wu, T.; Hu, B.; Weng, W.; Yao, Y.; Zeng, J.; Chen, Z.; Liu, P.; Liu, Y.; Li, G.; Guo, J.; Lu, H.; Guo, Z. Nat. Commun. 2021, 12, 6606.
[37]
Ma, L.; Li, Q.; Ying, Y.; Ma, F.; Chen, S.; Li, Y.; Huang, H.; Zhi, C. Adv. Mater. 2021, 33, 2007406.
[38]
Sun, H.; Huyan, Y.; Li, N.; Lei, D.; Liu, H.; Hua, W.; Wei, C.; Kang, F.; Wang, J.-G. Nano Lett. 2023, 23, 1726.
[39]
Chen, T.; Wang, Y.; Yang, Y.; Huang, F.; Zhu, M.; Ang, B. T. W.; Xue, J. M. Adv. Funct. Mater. 2021, 31, 25495.
[40]
Xu, Y.; Wang, C.; Shi, Y.; Miao, G.; Fu, J.; Huang, Y. J. Mater. Chem. A 2021, 9, 25495.
[41]
Wang, Y.; Li, A.; Cheng, C. Mater. Today Chem. 2022, 26, 101057.
[42]
Li, Q.; Chen, A.; Wang, D.; Zhao, Y.; Wang, X.; Jin, X.; Xiong, B.; Zhi, C. Nat. Commun. 2022, 13, 3699.
[43]
Zhou, Y.; Xia, J.; Di, J.; Sun, Z.; Zhao, L.; Li, L.; Wu, Y.; Dong, L.; Wang, X.; Li, Q. Adv. Energy Mater. 2023, 13, 2203165.
[44]
Wang, Z.; Wang, Y.; Lin, Y.; Bian, G.; Liu, H.-Y.; Li, X.; Yin, J.; Zhu, J. ACS Appl. Mater. Interfaces 2022, 14, 47725.
Outlines

/